
- I
I
I

-'P".

'.I

, "~I

1
i

[~J

Integrating database technology /
rule-based systems and temporal reasoning
for effective information systems:
the TEMPORA paradigm
P Loucopoulos," P McBrien,t F Schumacker,t B Theodoulidis,"
V Kopanas" and B Wangler§
"Department of Computation, Manchester and tDepartment of Computing, Imperial College,
London, UK, tService d'lnformatique, Universite de Liege, Institute
Montefiore, Belgium and SISU, Kista, Sweden

Abstract. Recent years have witnessed a growing realization that the
development of large data-intensive, transaction-oriented information systems is
becoming increasingly more difficult as user requirements become broader and
more sophisticated. Contemporary approaches have been criticized for producing
systems which are difficult to maintain and which provide little assistance in organi-
zational developments. This paper introduces the TEMPORA paradigm, which is
currently under development and which advocates a closer alignment between
organizational policy and information system functionality. This viewpoint impacts
on a number of critical issues related to the development process of information
systems most notably in the nature of conceptual models, the discipline adopted for
the development, the type of support provided by CASE tools and the run-time
environment. The paper introduces the philosophy and architecture of the
TEMPORA paradigm and describes the conceptual models, tools and run-time
environment which render such an approach a feasible undertaking.

Keywords: business rules, CASE, conceptual modelling, rule-based paradigm,

temporal database.

INTRODUCTION

Much has been written about the benefits and problems of contemporary approaches to the
development of large-scale information systems (Maddison, 1983; aile et al., 1983, 1986).
Despite the undeniable benefits that these approaches have brought about, two unresolved.

Correspondence Pericles Loucopoulos, Department of Computing, UMI$T, P.O. Box 88, Manchester, M60 1QO, UK.

_______ . . .__ --r_._. __ -. .-.-.-

.," ",

.'• - " ';

'.', ." I.... " "" " ~4·-~

· ~

j

· 1

]
· ,,

j. ";

::.~~::~~:~~:'.~~~'~'j

,
.j

First, there is very little explicit correspondence between business 'rules' and information
systems. This has the effect that the information system can be neither easily examined to
ascertain whether it is still aligned to business practice, nor used effectively to help develop new
enterprise designs. Second, the issue of maintenance and system evolution continues to be a
major problem in commercial software. A large part of this problem is the way that the factors
(mostly business policy) that cause change are not explicitly maintained, and even worse, their
representation in software is embedded together with programming code whose function is
concerned with issues such as file accessing, input and output, sequencing of operations, data
integrity, etc. A relatively simple example demonstra.ting this point reported in (Anderson et a/.,
1986), deals with eight business policy rules for implementing a payroll system. The implemen-
tation of this business application required 3,500 lines of COBOL code. The simplicity of the
problem, when expressed in business terms (eight rules), was counterbalanced by a complex
and voluminous code, much of which had little to do with the actual problem in hand, but rather
with its efficient implementation. The result was that business people could not check the cor-
rectness of the implemented policy as the people with the knowledge of the rate calculation
system were unable. or had no inclination, to understand the implementation. The result, in this
case, was that evolution of the system was difficult, as the implementation described the proce-
dure to determine rates of pay rather than containing the policy of calculation at a level abstract
enough to enable both developers and end users to reason about the business knowledge free
of implementation considerations.

To address these problems, TEMPORA proposes that developers must be provided with a
process which assists in modelling business policy and linking this policy to the software de-
veiopment process. TEMPORA advocates an approach which explicitly recognizes the role of
business policy within an information system and visibly maintains this policy throughout the
software development process, from requirements specifications through to an executable im-
plementation. The need for such a paradigm has been recognized in the, now completed
ESPRIT project RUBRIC (van Assche et a/., 1988; Loucopoulos, 1989). The TEMPORA project
builds upon these early results and extends this work in two directions. The first direction is con-
cerned with the use of a commercial DBMS as the underlying data management mechanism.
The second direction is concerned with enhancing the paradigm with the explicit modelling of
temporal aspects at both specification and application levels.

The TEMPORA architecture is shown in Fig. 1. An analyst/designer develops an information
system specification using an interactive CASE tool environment which incorporates three
tools, two of which correspond to the conceptual level in terms of the ERT (Entity-relationship-
time) and process (external rule language) models and one which is concerned with the specifi-
cation of application-related components. Later in this paper we discuss the conceptual models
of TEMPORA. The ERT and process part of the specification are expressed in such a way as to
enable one to reason at the business level (external level). Each component of the specification
is mapped onto an execution layer (design level) which deals with data and execution
mechanisms from a database schema perspective. We describe briefly the TEMPORA case
tool environment which is used in order to develop a TEMPORA application. The actual
mechanics of storing data, implementing constraints and executing temporal as well as non-

-_. __ • __ •• __ 4_ •• , ••••• __ ~ _. __ • ._~ _ •• _,_._ ~ __ 0. • __ ~ __ •

CASE
TOOL

SPECIFICA TJON

EXECUTABLE
SPECIFICATION

RUN
TIME

Figure 1. The TEMPORA architecture.

temporal rules is handled by the run-time environment which consists of the SYBASE DBMS
and its interface to BIMYrolog and an extension module referred to as the rule manager. The
run-time environment will be described later.

CONCEPTUAL MODELS

The entity-relationship-time (ERT)model

Basic concepts

The components of ERT are defined as follows.
1 Entity is anything, concrete or abstract, uniquely identifiable and being of interest during a

certain time period. Entity Class is the collection of all the entities to which a specific defini-
tion and common properties apply at a specific time period.

2 Relationship is any permanent or temporary association between two entities or between an
entity and a value. Relationship Class is the collection of all the relatiqnships to which a
specific definition applies at a specific time period.

3 Value is a lexical object perceived individually, which is only of interest when it is associated
with an entity. That is, values cannot exist in their own. Value Class is the proposition estab-
lishing a domain of values.

.-.-.- .•..--....--.... -,.._----~.~----- - ------ - .

,. -,: .

.... !

~ ..·:..:r ..··~ •.•. - .. i
.• ,.... ,,, '- • I ••. ~.

4 Time Period is a pair of time points expressed at the same abstraction level. Time Period
Class is a collection of time periods.

5 Complex Object is a complex value or a complex entity. A complex entity is an abstraction
(aggregation or grouping) of entities, relationships and values (complex or simple). A com-
plex value is an abstraction (aggregation or grouping) of values (complex or simple).
Complex Object Class is a collection of complex objects.
An entity or relationship can be derived. This implies that its value is not stored by default.

For each such derivable component, there is a corresponding derivation rule which gives the
members of this class or the values of this relationship at any time.

Time is introduced in the ERT model as a distinguished entity class. More specifically, each
time-varying entity class and each time-varying relationship class is time stamped with a time
period class. That is, a time period is assigned to every time-varying piece of information that
exists in a schema. For example, for each entity class a time period is associated which repre-
sents the period of time during which an entity is modelled (existence period of an entity). The
same argument applies also to relationships, i.e. each time-varying relationship is associated
with a time period which represents the period during which the relationship is valid (validity
period of a relationship).

Figure 2 presents the notation for the ERT externals. Note that the graphical notation caters
for the representation of some of the most common rules such as partial/totallSA relationships
and cardinality constraints.

The ERT model accommodates explicitly generalization/specialization hierarchies. This is
done through the ISA relationship which has the usual set-theoretic semantics. More specifically,
it is assumed that two subclasses of the same entity class and under the same specialization
criterion are always disjoint.

Cardinality constraints may be given to all relationships (including the I LP ARLO F relation-
ship) and also to their respective inverse relationships. Note here that there is no separate
notation for the I LP ART_0 F relationships. However, their corresponding cardinality constraints
are interpreted in a slightly different way. This is explained in more detail in the next section.

Complex objects

In general, complex objects can be viewed from at least two different perspectives (Batini,
1988): representational and methodological. The representational perspective focuses on the
way entities in the real world should be represented in a conceptual schema and on .the way
events in the real world are mapped onto operations on the corresponding objects. In contrast, if
complex objects are not allowed. for example, in the relational model, then information about
the object is distributed and operations on the object are transformed to a series of associated
operations. The methodological perspective treats the complex object concept as a means of
stepwise refinement for the schema and for hiding away details of the description. This in turn,
implies that complex objects are merely treated as abbreviations that may be expanded when
needed. In the context of the ERT model, complex objects are treated in terms of the methodo-
logical interpretation, i.e. they serve as a convenient abstraction mechanism.

.,:'~--"----,:_""",,,,,,----,,,---_.,,--,, ------•-.- ._-~_•.-- ..•...-._- ..•.._---'---, ..- -----.-----.""'-------,- ---_.~._----_._-

\ [
·1
I

~AI
B l~

It c II

L~
~ m1 m2

r-------,
: A I
L -.!

r-------T--,
I BIT I
L ~_~

r--------,
I F I
L. .•••

a r-' b
---- 1----

m 1 L - m2

Entity class A and derived entity class A
(dashed)

Time-stamped entity class Band. time-
stamped derived entity class B (dashed). T
is a symbolic time penod

Complex entity class C and complex
value class D

Simple value class E and derived value
class F. May have relationships to nodes of
type A, B. C and D

Relationship (binary) that may connect nodes of type
A. B, C or D. a and b are relationship names (b is inverse
of a). m1 and m2 indicate mapping in the format (x:y).
where x.y are non-negative integers, or n. Non-filled
box indicates derived relationship.

Time-stamped binary relationships. Tis a
symbolic time period

Figure 2. Graphical notation tor the ERT model.

-
a r-,--'

- ---I I T I
l.. ..l

~o-
/

Time-stamped unary predicates, T as
above.

ISA relationships (or rather ISS). Filled box -
total, non-filled - partial. Several arrows pointing
to round box indicate disjoint subsets. il

il
d
I

The notion of a complex object in ERT is shown in Fig. 3. The example ERT diagram shows
a complex entity class CAR and a complex value class ADDRESS. Furthermore, the complex
objects Cf-.R and ADDRESS may be viewed at a more detailed level as shown in Fig. 4.

The components of a complex object comprise one or more hierarchically arranged sub-
structures. Each directly subordinate component entity must be I LP ARLO F related to the
complex object border so that the relationship between the composite object and its compo-
nents will be completely defined. Whether the HALCOMPONENT relationship is one of aggregation
or grouping, can be shown by means of the normal cardinality constraints. That is, if its cardi-
nality is 0-1 or 1-1 the component is aggregate whereas if its cardinality is O-N or 1-N the com-
ponent is a set.

Most conceptual modelling formalisms, which include complex objects (Lorie, 1983; Kim et
al., 1987; Rabitti et al., 1988), model only physical part hierarchies. i.e. hierarchies in which an
object cannot be part of more than one object at the same time. In ERT, this notion is extended
in order to be able to also model logical part hierarchies where the same component can be part
of more than one complex object. To achieve this, four different kinds of IS_PAR T_0 F relationships

'!
'I

I
i
I

!

I
I
I

I
\-
I
I
I

.,,---' .. -

-- ~.-.:~

1-n ~RESS j
1-n

Depc:rtment

1-1

has

B1-1Spg
has

Reg. No.

1-1

Dept No. j

Figure 3. An ERT diagram.

:, '.'.:' ..,'-:... :.

;
I

. !

1
1,
I
I. '.1
1. ,
i.. ,

;.:;.f;~E;:~~:~:~~:J

HasComp

1-1

HasComp

1-1

ISpa,.~
1-n

Street name

City name

I
I

I
i
i

j I
~

j
!

Figure 4. Components of complex objects CAR and ADDRESS.

are defined according to two constraints, namely the dependency and exclusiveness constraints.
The dependency constraint states that when a complex object ceases to exist, all its components
also cease to exist (dependent composite reference) and the exclusiveness constraint states that
a component object can be part of at most one complex object (exclusive composite reference).
That is, the following kinds of IS_PARLOF variations (Kim, 1989) are accommodated:

(a) dependent exclusive composite reference,
(b) independent exclusive composite reference,
(c) dependent shared composite reference,
(d) independent shared composite reference .

..__.__._-~--~-------- -----...-.----------.-------_._--------~---.---=-,.

Note that no specific notation is introduced for these constraints. Their interpretation comes
from the cardinality constraints of the I S-P ART _0 f relationship. That is, assuming that the cardi-
nality of the I S_PARLOf relationships is (a, b) then, a = 0 implies non-dependenc~/, a 7=0 implies
depent:9ncy, b = 1 implies exclusivity while b* 1 implies shareness,

Finally, the following rules concerning complex objects should be observed.
Complex values may only have other values as their components. In addition, the corres-
ponding I S_PARLO F relationship will always have dependency semantics unless it takes
part in another relationship.

2 C0mplex entities may have both entities and values as their components. Every c'1mponent
entity must be IS-PARLOF related to the complex entity.

3 Components, whether entities or values, may in turn be complex, thereby yielding a
composition/decomposition hierarchy.

Time stamping semantics

The time period representation approach has been chosen because it satisfies the following
requirements (Villain, 1982, 1986; Ladkin, 1987).
1 Period representation allows for imprecision and uncertainty of information. For example,

modelling that the activity of eating precedes the activity of drinking coffee can be easily
represented by placing the temporal relation 'before' between the two validity periods (Allen.
1983). If one tries, however, to model this requirement by using the line of dates, then a
number of problems will arise as the exact start and ending times of the two activities are not
known.

2 Period representation allows one to vary the grain of reasoning.
The modelling of information using time periods takes place as follows. First. each time-

varying object (entity or relationship) of ERT is assigned an instance of the built-in class
Symbol Period. Instances of this class are system-generated unique identifiers of time periods,
e.g. SP1 , SP2, etc. Members of this class can relate to each other by one of the 13 temporal re-
lations between periods (Allen, 1983). The class CalendarPeriod has as instances, all the con-
ventional calendric periods. e.g. 10/3/1989, 21/6/1963. etc. Members of this class are also
related to each other and to symbol periods by one of the 13 temporal relations between time
periods.

Figure 5 shows graphically the definition of these concepts using the EAT notion, The
symbol. represents a temporal relationship and the symbol .i its inverse. The fact that the two
classes SymboJPeriod and CalendarPeriod are disjoint is also indicated in the diagram. How-
ever, for reasons of clarity, the exact definition of the calendar period units is not included. A
date format. e.g. 21/611963, is just a shorthand notation of a calendar period.

According to the above, the information in a conceptual schema is time stamped using
symbol period identifiers. No distinction is made between time periods and time points. The fact
that the abstraction level of a Symbol Period stamp is e.g., day can be inferred by its constrain-
ing temporal relations. The fact that an entity is time-stamped only at the day abstraction level ill
be represented by distinguishing between different SymbolPeriod subclasses according

_____ . ~ ._.A .. ~ _

O,n

Figure 5. Time period metamodel.

1.1

~

, ..
.:.:: :.~L:..:.;;.!~:.;~:.~~--;
- '; .. ~,,~.~ ...•. '~'::.

'. "" .. -).'

,
·1

". "j

..
::,_~~:-'>::'.~":::.::c .?:;
'~~'~{'~'~~-jl?~.~~~~;~.~

. ,,

.\ -":!"~:.."':~ :.7- ~ f.. :.'~.!
. , i

to their abstraction level, i.e. SPD, SPM, etc. (this last notation is not represented in the example of
Fig. 3). This form of constraint is a resolution constraint which, when applied to a Symbol Period
class, restricts its members to calendar periods of the same duration.

It is suggested that it would be convenient, to represent directly in the conceptual schema,
some other notions of time such as duration and periodic time. The consequence of this is that
the expressive power of the ERT external formalism is increased and so is the readability of the
schema. In (Theodoulidis et al., 1990) there is a more detailed description of the time semantics
of ERT.

In the ERT model, value classes and the I S_PARLO F relationships in a complex value class,
should always be time invariant. This is because an aggregation or grouping of values is defined
through the participating value components. These assumptions affect the way that an ERT
scheme is mapped onto a relational schema. As discussed already, the validity period of a re-
lationship should be a sub-period of the intersection of the existence periods of the involved
entities. This does not hold for the ISA relationship as the existence period of the specialized
entity should be a sub-period of the existence period of its generalization and that the ISA

relationship is always time invariant.
Time stamping, when applied to derived ERT components, has slightly different semantics

than usual. Since, the derived components are not stored by default, the interpretation of time
stamps refers to their corresponding derivation formulas. That is, if a derived component is not
time stamped then the derivation formula returns the value of it at all times, i.e. for every valid
state of the database. Alternatively, for the time-starJ'1ped derived components, the derivation
formula returns a value which is valid for the existence or validity period of this component, i.e.
the derivation formula must refer to this period.

Finally, time stamping in a time varying I LPA RT_0 F relationship is translated to the following
constraints. The dependency constraint in a time varying I LP ARLO F relationship means that:
1 the existence periods of the complex object and the component object should finish at the

same time with the validity period of the I LP ART_0 F relationship .
Also, the exclusiveness constraint is translated to the following.

- - _ •• -- • - -~. ~ p- - •••••• - ••••••• ---~-~- ••• _-.--.--_-.. _C_~""'''''''--'''~__"''''''''''__'''J._~_'.•.•"""...=-..,.:''''''~.••••

.' ..;~."",--. - '-" ~~-----_.- ---. --- ...• - ••. - -_ ". _. __ ••• •• _ " •.•• __ ••_~ __ •.. ".n. _ • __• ••. _ ••...•• "".

2 If an object A is part of the complex objects Band C, then the period during which A is part of
B should have an empty intersection with the period during which A is part of C.

Summarizing, the above time semantics permits us to keep historical information for the
Universe of Discourse, include a strong vocabulary for expressing temporal requirements and
also model the evolution of complex objects through time in a natural way.

The External Rule Language

In using a temporal logic rule-based language (TL) to control the processing of information,
TEMPORA has allowed for the representation of business rules of an information system in a
highly declarative manner. Business rules, and the corresponding aspect of the executable
rules, may be classified into three different classes.
1 Action Rules, which imply some action must be taken if some condition holds, and will be

modelled by a full TL rule of the form condition---+ action.
2 Derivation Rules, which express that some facts hold if some group of other facts hold, and

are used during execution to evaluate the condition part of TL rules, and are represented by
a rule in the condition language of the TL of the form condition derived+-eondition.

3 Constraint Rules, which specify that some condition must not be violated. These are used
during execution to validate the actions being taken. If the constraint would be violated, then
the rule will rollback, and cause an error to be raised.
At the conceptual level there is not this distinction between different classes of rule, and so

we introduce the notion of an External Rule Language (ERL), which can model different classes
of executable rules in-uniform manner. We leave the decision of which class a rule belongs to
until the design phase, and thus allow the specification of the rules in our system to closely
mirror the business rules from which they are derived. This two level approach allows users of
the system to inspect the rules in a form which they comprehend, but still gives the designer the
procedural control over execution, in choosing the interpretation given to an ERL rule when
translated into a TL rule. To summarize, the ERL rules closely match the business rules, and the
TL rules closely match the procedural interpretation given to the business rule in the design
phase.

The presence of the ERL also allows us two other important benefits.
1 We may express the external rules (that the user views) as manipulating data in the ERT

model, but have our executable rules manipulate data in the database model, and thus be
more efficient to execute.

2 We may heavily sugar the syntax of the ERL to give a semi-natural language flavour, whilst
leaving the internal rule language in a more concise form that programmers would desire.

ERL expressions

There is one basic structure for all ERL rules, given by the following BNF definition, where the
expressions in bold ~rackets are optional. Any free variables that appear in the rule have implicit
universal quantification .

.••••..~ •• _"I"'""""...,......"...,.~ __-._ ... ----- --'''--.' .. 'h_. __ •..•. _

..-" .. -

E R L_ r u Le : : = [[W HEN< t rig 9 e r _ e x p> J [I F< con d_ e x p>] THEN] < e x p>

This leads to four valid variants of the basic ERL rule, listed here with their corresponding
semantics.

(a) <exp>
expmust aLways hoLd,

(b) IF<cond_exp>THEN<exp>
exp must hoLd whenever cond_exp hoLds,

(c) wHEN<trigger_exp>THEN<exp>
exp must hoLd when trigger_exp has just begun to hoLd,

(d) WHEN<tr; gge r_exp>IF<cond_exp>THEN<exp>
ex p mu s tho Ld ; f can d_ ex p h 0 Ld s, and t rig g e r _ e x p has jus t
begun to ho Ld.

Referencing the ERT Model

To access the entities and values in the ERT model, a single general structure is used, defined
by the BNF expression below, with the optional repeating sections in bold braces. Naming an
entity or value class causes the access expression to hold for each instance of the class. and by
enclosing a variable in parenthesis after the name to give the predicate form, bindings of the
variable can be obtained to each instance found. Enclosing a list of relationship names with
other entities or values enables us to qualify our selection of instances by stating that the par-
ticular instance must be related to an instance of the other entity or value.

ERL_data_access: :=<entity/vaLue name>[«variabLe»]
[[< r e La t ion s hi P><ER Ld a t a_a c c e s s >{, < r e La t ion s h i P><ER L_d a t a
_a c c e s s>}]]

As an example, consider the data access expression for the ERT of Fig. 6, which models an
application that deals with the handling of arrangements about customers' accounts for a public
utility organization.

The following expression finds all pairs of account references a and instalment references i.

account(a) [is_governed_byarrangement
[comprises ;nstaLment(i)]]

Note that we need only give variables to the entities or values we are interested in finding infor-
mation about. so for the above example we were able to omit a variable for the arrangement
entity. Also note that the enclosure of comprises instalment(i) in brackets is necessary to indi-
cate that we expect the relationship comprises to be between arrangement and instalment, and
not between account and instalment.

._------~.•.._~ ...---- ------_ .•..•~_.•-.- - -- .._-_-.---~--...;-..-~~..

,-----------.,
I Open_ I

I account)
l L...J

r---------,
I Closed_ I

I account ~
I ..JC..J

Status

Amount J

l,n

Account

is governed
by

Prepay_
indicator

L Instalment
~

a
comprises

comprosed_of
, I

1,1 has
Arrangement

1.1

Figure 6. An example ERT model.

Collecting information

A set collection construct is provided, together with a group of set operators. This allows us to
group all variable substitutions for which an expression holds, and perform operations such as
C OUN T to count the number of instances or IN TE R SECT to find common substitutions from two set
expressions.

Thus we could find the number of accounts by the expression cau N T { x Ia c co U n t (x) } _

An example of the ERL and TL

As an example of the use of ERL in interpreting business rules and of the use of the TL in
executing these rules, consider the application modelled in the ERT model of Fig. 6. In this
example, an arrangement is an agreement between a customer and the public utility
organization for the customer to make some set of fixed payments (installments) at given dates.
Both the instalments and actual payments made are recorded in the database.

In the business rules listed here, the notion of a temporal database is used in order to be
able to describe entities as being 'present' in the 'current' database or 'past' database, and thus
phrase rules in terms of current records and old records. In fact, all information is present in one
database, but the TL provides a mechanism for it to appear as a series of databases or 'states'
over time (q.v. section on the TL).

(a) The number of accounts is limited to 1.300,000,
(b) At most 25,000 accounts shall have arrangements,

'I

I
:1
'j

]

~.tF---,.--.~----.._----------..--.--.--.-,'.--

• 4 ~ •••• -i:" _:. ;.
.. , ..

-*',. :-~~'- .,..•-' ~ ~-~

- .
, ;~;"":>':.2:~~:~:2:'~:_~~

:' ..:'" •.~.~.. ', ~.,
4: ' ...•. _, _._.'

;
.' - I. ,",

. I
..

~);~;;:~~~~~?~1
. ;

-, •..•~.:.•.•,~-' .•. -- -:.:\!
",-'.~~ . '--'\", '-.- 'j

-. ~

(c) An open account is one which exists in the current records,
(d) A closed account is one which does not exist in the records at present, but existed at

sometime in the past,
(e) A c1earby arrangement has only one instalment,
(f) A scheduled arrangement has more than one instalment,
(g) If it is 7 days after an instalment was due on a scheduled arrangement, and the sum of

all payments made during the period of the arrangement is found to be less than the
sum of all previous instalments and half of the last instalment, then the arrangement
shall be terminated,

(h) If it is 7 days after an instalment was due on a c1earby arrangement, and the sum of all
payments made during the period of the arrangement is within £25 of the instalment
amount, close the arrangement in the normal way.

The business rules (a)-(h) may be interpreted by an analyst into the following ERL rules,
where all keywords of the language have been written in capitals. A short explanation of any
new constricts of the language introduced, follows each example rule.

(a) couNT{alaccount(a)}<1"300,,OOO
(b) coUNT{ a I a r ran gem e n t (a) } <2 5 " a a a
(c) IF account (a) THENopen_account (a)

(d) IF NOTaccount (a) ANDIN_PASTaccount (a)

THENclosed_account (a)

t NOT<exp> holds for variable substitutions for which
exp does not ho ld.
I N_PAST<e x p > h 0 l d s for e a chi n s tan ceo f ex p h e l d 1 nth e
past.°j

(e) I F COUNT {i I AT_ANY _ TIME ins tal men t Ci)
[comprises arrangementCa)]}=1
THENc learbyCa)

tAT _ANY_ TIME< e x p > h 0 l d s for e a c h ; n s tan ceo f e x p h 0 l din gat
any time past" present or future. Note here that we derive
an entity as holding in the present from information
a b 0 ute n tit i e s w h i c h h e l din the pas t • OJ

(f) IF COUNT{i IALANLTlME i nsta lment (i) [compri ses
arrangement(a)]}>1
THENscheduleCa)

(g) IF 7*DAYS AGO
(ins tal men t [val u e am0 u n t (; n s tal l) " bel 0 n 9 s_ to

arrangement(a)]
ANDschedule(a)
ANDprev_instalments=sUM {old_vi

IN_PASTinstalment[value amount(old_v)" belongs_to
arrangement(a)]})

ANDpay men t s = SUM{p I I N_PASTam 0 u n t Cp) [0 f a c c 0 u n t _m0 v erne n t

'_-U'--.'_. ._ - -.'.' . _, ---- ,,,,,-. -- ..--. - - -.-----.'-.. ...•.•__.....,..""""'••••.•..".._.

I
- i
!

[t Y pep a y men t, c h a r 9 e d_ to a c c 0 u n t [g 0 v ern e d_b y
arrangement(a)JJ]

ANDpay men t s < pre v_ ins tal men t s + 0 • 5 * ins tal l
THENterminate_arrangement(a)

!*<time>AGo<exp>holds for each instance of exp ",hi ch
held at time before the present. SUM<ERLset_exp>finds
thesumof all instancesof the leadingvariablefromthe
set ex pre s s ion va ria b l e lis t • *j

(h) IF 7*DAYSAGO instalment[value amount(instal), belongs_to
arrangement(a)]

ANDc learby(a)
ANDi nsta l-25<suM{paY!IN_PAST amount (pay) [of

a c c 0 u n t_m 0 v e men t [t y pep a y men t, c h a r 9 e d_ to
account[governed_byarrangement(a)]JJ

THENclose_arrangement(a)
To complete the simple example o! the arrangement handling system, a possible interpreta

tion TL is presented. It is during the design phase that the conceptual rules of the ERLan
translated to the more procedural rules of the TL. For the purposes of this example it has beer
assumed that business rules (a) and (b) are constraint rules, (c)-(f) are derivation rules, and (g
and (h) are action rules. The TL rules make reference to a Relational Database (ROB) scheme
and therefore a mapping is required from the ERT level to the ROB level (an automatil
generator is being developed in the project). The mapping chosen in this example has stored a
the values associated with each entity in a single table, with a surrogate field representing th.
entity, and a table for each relationship between two entities containing the surrogates for tht

entities.

(a) declare esb_account(_,_,_,_,_,":")=database
(cardinality:O •• 1,300,OOO),

Constraints are not made to be part of a TLrule, but declared to the TLrule system, and used tl
control the updates made as part of the actions of a rule. As part of the design phase we ma
also wish to include the constraint information as part of rule conditions, to prevent the possi
bility of an action attempting to violate the constraint. For instance, as part of the condition of
rule which is intended to add a new account, we may check that the number of accounts alread
present allows us to insert a new one without violating the constraint.,

(b) d e c l are a r ran gem e n t (_, _) = d a tab a s e
(cardinality:O •• 25,OOO),

(c) open_account (Acc)<esb_account (Acc,_,_,_,_,_),

A derivation rule can be stored as a clause of the PROLOG-likelanguage used to evaluate 1

conditions.

(d) closed_account (Acc)<=--,esb_account (Acc,_,_,_,_,_) 6+
esb_account(Acc,_,_,_,_,_),

....
• •.•• ~ •. ~ ." I" -."

_,. _'_, __ 0· ••.••

.:

'. j

. ,
... ~

·:~~~t\~~t~)
.1

The. operator causes a search of past information to be made.

(e) cLear_by (Arr)<count(otinstaLments(Arr,_)\70instaLment
(Arr,_),1).

The count predicate finds as its second argument the number of instances for which the
expression as its first argument holds. A TL formula of the form e. X \7 0 x causes all
past, present and future instances of x to be found.

(f) scheduLed(Arr)¢= count(e+instaLment(Arr,_)\70instaLment
(Arr ,_) ,n) 6n>1.

(g) i n_p as t (7 *day s ,
(instaLment(Arr,Last_Amount)
6arrangement(Arr,current)
6governed_by(Esb_Acc,Arr)
6esum(Due,PinstaLment(Arr,Due),TotaL_Due)
)

)

6sum(Payment,P(movement(Esb_Acc,payment,
Payment)6
arrangement(Arr,current»,

TotaL_Paid)
6Last_Amount*O.5+TotaL_Due>TotaL_Paid
-0 t e r mi n at e_a r ran gem en t (A r r) •

A full TL rule models an action rule. The i n_p as t predicate finds if the expression given as its
second argument held at a time before the present indicated by the first argument. The 0
operator specifies that the actioon takes place immediately.

(h) i n_p as t (7 * Day s , ins taL men t (A r r, Am0un t))
6 c Lea r _b y (A r r)
6governed_by(Esb_Acc,Arr)
6sum(Payment,P(movement(Esb_Acc,payment,Payment)
6arrangement(Arr,_»,TotaL_Paid)
6Amount-25<TotaL_Paid
-0 c Los e_a r ran gem e n t (A r r)

CASE TOOL SUPPORT

The TEMPORA case environment is being implemented in a case-shell called RAMATIC, which is
a 'meta-tool' for case tool implementation developed by the Swedish Institute-for Systems
Development (SISU). RAMATIC includes a number of features to facilitate the implementation of a
case tool for a particular, graphics-oriented method. For typical specification methods, which

------.--------- ----- ----------------------,.--,------.,...,---.--

are similar to SADT, ER-modeling, and hierarchical decomposition of data flows and pro-
cesses, the time to create a case tool is in the order of 2-3 weeks.

RAMATICcan be used to capture, and store in an integrated fashion, a wide range of diiferent
types of specification, be they graphical, form-oriented, tabular or pure text. This is evidenced
by the current use of RAMATICin a number of real projects in industry, where different kinds of
description and specification techniques are employed. It is also possible to include project
control and quality control information such as design decisions, various annotations, informa-
tion about designers/analysts, etc., in the specification. On the output side, various report forms
can be defined as well as special checks to be performed. Various cross-reference matdces
can be defined easily in order to display 'where used' and 'where created' information. For
special analysis purposes it is simple to extend RAMATICby analysis programs written in C or
PROLOG.The coupling to these extensions may be more or less tight depending on whether
RAMATICinvokes them or communicates with them via files.

In TEMPORA, a requirement of the CASEtool is to provide facilities for the diagnosis and
analysis of the conceptual schema. To this end, the currently supported DBMS cs5 is supple-
mented by the PROBEsystem which is an Objected-oriented layer developed on top of BIM_PROLOG.
Since the storage mechanisms of PROBEand RAMATICare based on different approaches, a
mapping from RAMATIC_cs5 internals to PROBEobjects has been implemented. In a longer
perspective RAMATIChas to be re-implemented to some extent in order to achieve a closer
integration.

Systemspecification
Forms
editor

~RT

Capturetools

ERL

Conceotualmodel

PM ..• ~\1 ~ 1

I
Analysis

tools

Transformation

Executable
system

Figure 7. TheTEMPORAcasetool environment.

_~~ __ """"' ~ Oo ' • __ -.---

- ... r"'~:-~:<,'!.·:;'::-..:;
','. -'.- .•• '.:-:~'. :..:~ ..:..\:.+_r'.: ~~

" ,.... ".. ;...."'-- '".~

.... - .'- " ~-." ..
'.

'." .

. " _ .• ',: . - "'~ .
. . -,,;,.', .."\ ..'".

. , .' ';

: :":~:f:~::~::~~~~4
)~~';':.~-'~:..:.\.::.-~

• : , •• - •.• ,_. r~

,.. :

• , .• 1
I

~.-",:::~:~;·~,?~:7::.;.~::;~
-- .. '~".; -~...-.:.-'I

The architecture of the TEMPORA case tool environment is shown in Fig. 7. This is the
environment by which one would develop applications according to the TEMPORA paradigm.
The TEMPORA case tool includes a set of menus that drives the user through the different parts
of the tool. However, there are separate compon~nts for each one of the capture and analysis
tools, i.e. the ERT editor, the ERL editor and the Process Model editor, as seen in Fig. 7. Each of
these components takes care of the capturing and analysis of a specific part of the application
domain and it satisfies a set of requirements in terms of their functionality.

In addition to the capture and analysis components, the TEMPORA case tool also provides
a forms editor. Currently, the exact format and functionality of the design tools and the way that
these tools will be interfaced with the rest of TEMPORA case tool is being investigated.

RUN-TIME ENVIRONMENT

The non-temporal rule manager

As seen in Fig. 1, in the current TEMPORA architecture there are two sets of executable rules
and also rule managers. The first one is the non-temporal approach that may be used for appli-
cations that do not require historical information in the database in contrast with the second one,
which is called the temporal approach .

For an application to run in non-temporal mode, certain restrictions need to be adhered to
during the analysis and design phases. These restrictions relate to the ERT model and the ERL

and TL rules. The restriction to ERT is that the time stamps are not considered (thus reducing the
model to an extended ER model). whereas the restriction to ERL and TL rules is that the only tem-
poral references concern the next time slot, which is equivalent to performing modifications only
on the current database, and not on some future/past database. Furthermore, the action rules
should always mention the trigger (WHEN part) to indicate the specific circumstance under
which the rule should be considered. Given these restrictions at the specification level the appli-
cation can benefit at run-time from a non-temporal rule manager. Figure 8 gives a block diagram
from the run-time subsystem showing also the main flow of information between modules. The
main characteristic of this approach is that the underlying relational DBMS does not necessarily
possess a built-in rule management facility. Consequently, any conventional RDBMS could be
used together with our extension module.

All rule management activity is undertaken by the extension module (EM) while database
management is accomplished through the RDBMS. The EM consists of four main sub-modules:
the top level driver (TLO), the interface mechanism (1M), the external rule manager (ERM) and the
rollback mechanism (RM).

The top level driver module (TLO) coordinates the behaviour of all the other modules
between each-other as well as in connection to the RDBMS, while at the same time it handles
the interaction between the user's environment and the run-time subsystem. The interface
mechanism (1M) handles deductive query processing. According to our choice of an interpeted
or a compiled approach it could incorporate either a coupling or a compilation mechanism. In all
cases 1M interfaces RDBMS to TLO and subsequently to ERM. The external rule manager (ERM)

.,

External
aCl'on

-Top level driver (fLD)

t A-

le I J~6 10 19 I cl !
-\ 0

D I~ 9 Q i .g .D<C a; I~~ ?:i ~~ :> ;: U r: <l:
cJJ <!J ; ~ -

i~ 0.- CJl 0. c: rc ~ ix ,0 .;;: 0 x C 2·0 w I@ "
I!u 0 w I o 0
u U

I I! ~ I ,

Extension module (EM)

-Response

External
event

1 ;

Figure 8. The run-time system architecture.

handles the entire rule management and processing functionality of our system. It uses TLD as a
communication bus for interaction with the rest of the run-time subsystem as well as the en-
vironment of the user. The rollback mechanism (RM) finally restores a database-consistent state
after a transaction aborts (as a simpler alternative, we could consider the rollback mechanism
as part of the standard features offered by the RDBMS).

The communication between the EM and the RDBMS is done through UNIX servers, and
within each module according to its local protocol. Transactions are initiated by external events
detected by the TLD inside EM.

When TLD detects an external event (database operation, external signal) submitted by
users, application programmes or the system clock, it converts this event to atomic elements.
Parts of the external event that happens to be database operations are logged inside the roll-
back mechanism and then applied to the basabase. The RDBMS then confirms an operation's
validity (e.g. in connection to the database schema definition). Information about the event is
then passed to ERM which then detects and activates the relevant database level rules.

Database level rule processing is undertaken by ERM which, during database level rule
condition evaluation, sends queries to RDBMS via TLD and the 1M. Answers are collected and
sent back from the RDBMS to 1M, to TLD and then back to ERM.

~~~--~_.----~,.-------------_._-_._- ______________ ... r-__ ~ ·.·-..- --



.~:~.4";:~:~:,,:;?;;.::-:.~:~;.;~

•..~:~-tj:~,~::t:.~-~:;.=~

.. ~.:.': ...:;~:<.>~:'~
• - : - __ ,.: •• 1

. ~ : "•. ",.::.. 0: . .-
. ' ..

'."'\ "

..
• • 0 __ ••..-.....' ·~<c(:··:)

... " '.: .~.....
- ..~.'.,.~,

- -

. .: •. ; :.-' : •••~ ',~' I..:
,,

.. ':" .. !
•....•. I

~ ~ '·1
•• 1

I

j
, •. 2

. .
I

..I

. .
. . j

j
- I

... l
I:,

~.;..'".;~:~~!.~~.';to ~;;,'1.. ,"; .. '. ~
. "- ..~. -1

Firing of dynamic rules involves external actions and/or database operations to be applied.
External actions are then sent to the environment of the user via TLD while database operations
are logged inside AM and then sent to RDBMS via TLD. The RDBMS again confirms an opera-
tion's validity .

Transactions are initiated by external events but subsequent triggering cycles are initiated
by database operations caused by database level rule action part application. TLD informs EAM

about all these internally generated operations. Triggering cycles continue until transaction
termination is either successful or unsuccessful. Successful transaction termination occurs
when no more active database level rules remain inside EAM. This situation is detected by TLD

when receiving a commit signal by EAM. Successfui transaction termination is followed by com-
mitment to the current database state (all database operations related to the current transaction
are made permanent) .

Unsuccessful transaction termination occurs either when an explicit rollback operation is
detected inside EAM and an 'abort' signal is sent from EAM to TLD or an 'invalid operation' confir-
mation signal is sent by RDBMS to TLD. In both these cases, TLD activates the rollback
mechanism (TLD transmits an 'abort' signal) which 'undoes' all database operations related to
the current transaction (when using a AM which is built-in to the RDBMS, then TLD sends an
'abort' signal directly to the RDBMS). Transaction termination (either successful or unsuccess-
ful) is followed by a response to the external event that intitiated the transaction .

The rules supported by the non-temporal rule manager are of the general form:

r u Le ( R u Le_n a me, R u Le_p ria r i t Y ,
event(Event_expression),
condition([Conditions_ListJ),
action([Actions_listJ) •

In this expression R u Le_n am e is an identifier for the rule. R u Le_p r i 0 r i t Y is a
measure of significance for the rule taken from a predefined priorities interval. Eve n t_
ex pre s s ion is an expression specifying under which circumstances the rule can be acti-
vated. This expression can be either a simple event, a conjunction of simple events or a disjunc-
tion of simple events. A simple event is either a database modification (insert, delete, update),
or an external signal (user signal, clock signal).

Con d i t ion s_l i s t is a Boolean expression with the syntax of a valid PAOLOG clause
body, containing both built-in and user-defined predicates. When the Co nd i t ion s_ Lis t
for an active rule is evaluated and found 'true', the rule is applicable and will be fired .

Act ion s_ Lis t is a list of database operations, external-procedure calls or the
operation 'abort'. Database operations are set oriented insertions, deletions, updates. The
target tuples for deletions and updates are specified inside the operation by an expression
(Locate_expression) which has the same syntax as Conditions_list, des-
cribed above. In Fig. 9, a simple rule that aborts a transaction when insertion is attempted to a
subtype (s i n 9 Le_o r d e r _c us tom e r) and the inserted item(s) do not exist in the super-
type (customer) is shown.



. ... ,

. ,

ruLe(r1,20,
event«;nsert, s;ngLe_order_customer)),
cond;t;on([;nserted(L),

memb e r ( ( s; n g Le_o r d e r _c u s tom e r , L 2), L),
for_aLL_members«_,[XJ),L2),
not_ex;sts(customer(_,X,_,_)),

act;on([abortJ)) •

Figure 9. A rule that causes transaction abort where the event specifies a modification (insert/delete/update) of a single
entity in the ER diagram, and the conditions specify relationships between entities which must hold for the actior~s (further
modifications and/or calls to foreign procedures) to take place.

The non-temporal rule manager is responsible for the run-time execution of the QL->AL
rules. According to this execution model, the system receives input from its environment
through an external queue. Any item inside this queue can be of any of the following types.
1 Individual items (insertions, deletions, updates, signals). These are submitted by an exter-

nal agent (user, application program, system clock).
2 Operation blocks submitted by an external agent (user or application program).

In order to process external queue items the system uses an internal queue where any
external queue item that has to be processed is placed (only one item at a time). Depending on
the type of the item under consideration, different execution mechanism characteristics apply,
reflecting the semantic differentiation between items of the above mentioned types. Rules on
the other side are considered for activation either in immediate mode (mode-i) or in deferred
mode (mode-d).

This is done, however, only in the case of operations submitted by external agents (users,
application programs, etc.). Operations found in the action part of rules are treated differently.
We apply action parts of rules as atomic units using all rules as if they were in mode-d (similar to
the system in (Widom, 1989)).

The above functionality scheme is justified by the following rationale. User input is frequently
not well thought out and needs supervision. The adopted system provides this supervision
through the use of mode-i and mode-d rules. Additionally this supervision can be made tighter
or looser. Tighter supervision can be obtained by putting more rules in mode-i, while looser
supervision is obtained by putting more rules in mode-d. Rules on the other hand, could be
considered as being internal agents who submit their action part for application. For operations
inside the action part of rules we do not provide both mode-i and mode-d rule consideration
facilities. Instead, all rules are considered as if they were in mode-d. This is because the action
part of rules is written by systems analysts and it is assumed that it is 'well thought' and 'tested'
and consequently, it does not need the constant supervision that mode-i offers. Avoiding mixed
mode semantics for the action parts of rules greatly simplifies the model without a significant
loss of function.

The Temporal Rule Manager

In TEMPORA action rules can refer to the temporal dimension of the database and thus are

"II,III
J

~_ •••_------------------------,-------- __ -__ .~ ~ n._· - .. '



. . .-t .. i>: .•....~'.:.";

'. ~- ~:.'~.::"::,': ..:.:.::3

.', .. ' :.....•
. "

-, ..... .. ~

'.' ,

.. -... ,.

. .

..

·~t~~li~&:i~·~

i.. ,
'.' '1

"----

composed of two temporal components: the TaL (Temporal Query Language) and the TAL

(Temporal Action Language). A TaL query is evaluated on the database and is concerned with
the condition part of the rule. The action part is a TAL formula specifying actions to be taken .

The function of the Temporal Rule Manager (TRM) is to execute these rules in such a way that
the system matches its specification. In other words, the TRM evaluates the queries and performs
the actions necessary to ensure that the system actually behaves as stated in the rules.

As a first approach, it is assumed that the system is powerful enough to process an arbitrary
large set of rules within a tick. This assumption will allow us to define a theoretical execution
mechanism independently of any possible implementation constraint. Of course, in a real situa-
tion this assumption cannot be satisfied. Therefore, the basic model needs to be refined to
make it practically feasible.

Assuming that the previous hypothesis is satisfied. the basic execution mechanism can be
viewed as the infinite repetition of an elementary cycle starting at each tick. The work
peroformed during each cycle can be described as follows .
1 The Query Module (OM) evaluates the condition part of each rule.
2 For each rule Ri' the OM generates the corresponding action set" ASi.
3 The OM sends the global action set (As,U AS

2 U ... U AS
n) to the Action Module (AM) and stops.

4 The AM analyses the different TAL formulae of the global action set and determines the
sequence of actions to be performed directly. This operation includes several steps: consis-
tency checking, scheduling, etc. The AM also keeps all (partial) TAL formulae describing
actions to be taken at future ticks.

5 The AM sends the action sequence to the Transaction Module (TM) which performs the
actions immediately.

6 Go to step 1 and start a new cycle at the next tick.
This simple mechanism is sufficient to ensure that the system will match the specification

described by the rules, because:
(a) The system re-evaluates all the rules at each tick and performs the necessary actions,
(b) The tick is the smallest time unit representable (i.e. everything is fixed in the system

within a tick), and thus our execution mechanism will see all changes of the database.
If the choice of the tick as the basic cycle length appears to be a sufficient condition to

ensure that the system will match its specification, it will usually not be necessary to re-evaluate
all the rules at every tick. This particular aspect is currently under investigation.

The architecture of the TRM can be represented by Fig. 10. Each sub-module has an
auxiliary database attached to it, which contains all information necessary for the module to
work properly.

The refined execution mechanism

Temporal Rule Manager

From a practical point of view the basic model has many limitations not least the fact that the

"The action set AS, for a query 0, is the set of TAL formulae {A 'i".A ~} obtained from A; for all instatiations of
variables for which the query part is true. If the query cannot be satisfied, the action set is empty.



.---

External
query/action

Ouery
module

Global
action set

TAL del.

Action
module

Action
sequence

Action on
external world

Transaction
module

Actions
description

Rules -
TOl del.

Temporal database

Figure 10. Temporal rule manager architecture.

number of rules that can be processed within the duration of one tick (whatever duration we
choose for the tick) is finite. Therefore, the execution mechanism can be modified to take into
account a possible delay in the temporal modules with respect to real time (i.e. the time will not
be finished at the end of the tick). The existence of a delay is especially important here, because
we deal with temporal rules. For instance, if we consider the evaluation of a query, the evalua-
tion begins in the current state of the database, which has been defined as the state that con-
tains the current real time. It is obvious that starting the evaluation in a different state can lead to
a different answer. Therefore. a query should always be evaluated at the right real-time.

The only reasonable way to solve this problem is to introduce two time references:
(a) the actual real time, denoted lA, and
(b) a temporal module time, denoted lTM' which is considered as the real time by the different

temporal modules, but can actually be delayed with respect to lA'
More precisely, lTM can be defined as follows: after each evaluation cycle, lTM is incremented

by one tick; if hM is in advance of fA, then the system waits until lA=lTM to begin the next cycle.
otherwise the next cycle begins immediately.

When the system is (almost) idle, everything happens as if lA was equal to tTM- If the load of
the system increases, the virtual clock lTM slows down and lTM is delayed with respect to lA'

However, if the system is not undersized, we can reasonably expect the system to catch up
when the load decreases.

The use of the virtual time reference fTM for the temporal modules allows us to use our basic
execution mechanism on an actual computer system without any modification, except for:

tTM=tTM+1 tick
Wait while tTM>tA then go to step 1.

The assumption under which the system can process an arbitrary large number of rules
within a tick is verified because a tick no longer has a fixed length. Its length may vary according
to the amount of work to be done.



~ ...~-

.-\ ':--"f ••..•..• ~ ,- .•. .;

.~ .:.=-,~:~:4~..~/~

- ~ •••• 0 •••••• _ ~

' . .' ': .. -.
. - - "

, .

j ~. - •

• ' ••• ~•• ~J":~_ '~"' •

. . .•.... '--
•. - -:'" - •. \. -

, -
;' :.."-;:~~::';;:!.~:.:~,.'.?
..::.:.'~:-::~:.\.:!.~

'. ,'. '-
"

'I.. '
- ,",' I

.......
:-~-=-~:.:~~:~·~t
~.~:;i~·;:~1~i7~

'; '~~~~~:~.--:-~:.!
•••• ; o' •

,.." .•...

The only impact of this modification on the behaviour of the system is that when tTM< tR, the
system does no longer behave in 'real time', i.e. at the real time tR, the model present in the
database is not up to date but corresponds to the model at time tTM• Therefore, in most cases,
we will have to buffer external requests until tTM is greater than the time of submission, in order
to make sure that these requests are evaluated on the correct model.

Taking the architecture of Fig. 10, we only need to add one input queue for every possible
external input source (external query, action, signal, etc.). For example, when a query is sub-
mitted to the system, it is placed into the query queue and all the references to 'NOW'are instan-
tiated with the time (tR) of submission. The queries of the queue are processed by the system
(i.e. submitted to the OM) when tTM is greater than the time of submission.

CONCLUSIONS

Contemporary approaches to information system development, whilst attempting to improve
the management of developing such systems through the use of software engineering methods
and CASE,have paid little attention to the requirements for effective system evolution and for
using information systems to effect changes at the strategic level of organizations.

The process of software development can be viewed as a sequence of model-building
activities. The quality of each set of models depends largely on the ability of a developer to ex-
tract and understand knowledge about an application domain which needs to be acquired from
a diverse user population (Loucopoulos & Champion, 1988). However, current technology does
not provide any powerful formalisms or tools to support such a view. The current fragmentation
in development approaches has resulted in a situation where methodological knowledge is dif-
ficult to obtain and use in a constructive manner.

It is also becoming obvious that current conceptual modelling formalisms are oriented
towards the functional specification of the software system rather than the definition of the prob-
lem domain (Greenspan, 1984). If improvements are to be made in the quality of software then
the knowledge about the application domain must be formalized and explicitly encoded. To this
end TEMPORA follows the premise that information system development is about formalizing
and documenting knowledge about the universe of discourse and this knowledge should be
represented explicitly and independently to the way that it is implemented in data structures and
algorithms thus leading to a more efficient way of developing and maintaining software.

The TEMPORA project is attempting to provide a better approach to building systems
through the development of a software process and supporting tools which will explicitly accom-
modate those parts of a system that correspond to those elements of organizational policy
which in essence impose changes to the structure and operation of information system. Tradi-
tionally, ANSI/SPARc-style data management architectures and recent developments in HCI
management tools have enabled the separation of system oriented elements from procedural
code. The main initiative of the TEMPORA paradigm has been to extend this approach to in-
clude organisational policy. In particular, TEMPORA seeks to separate out and explicitly main-
tain throughout the software life-cycle, the notion of policy, as described by constraint, deviation
and action rules.

~-~---- ...•.•..---,~._-~----~._-•...•



.~~_~,~.-.~..~ __ ..•.... ~ ......__ ~____'___ .-_---..l .

This paper seeks to demonstrate how a set of business rules may be interpreted by analysts
in terms of the objects that exist in the organization and their structural relationships (using the
ERT model) and the rules that are expressed by references to these objects (using the ERL).
Furthermore, the paper demonstrates how this conceptually oriented specification can be trans-
lated into an executable specification and outlines the major components of a rule manager
capable of handling transactions at the run-time application level.

ACKNOWLEDGEMENTS

The work reported in this paper has been partly funded by the Commission of the European
Communities under the ESPRIT R&D programme. The TEMPORA project is a collaborative
project between: BIM, Belgium; Hitec, Greece; Imperial College, UK; LPA, UK; SINTEF,
Norway; SISU, Sweden; University of Liege, Belgium and UMIST, UK. SISU is sponsored by
the National Swedish Board for Technical Development (STU), ERICSSON and Swedish
Telecom.

This paper summarizes the contribution to the TEMPORA project of the following: R.
Anderson, P. Bergsten, J. Bubenko Jnr, G. Diakonikolaou, R. Jenssen, M. Niezette, R. Owens,
D. Pantazis, U. Persson, A. H. Seltveit, G. Sindre, A. S0lvberg, U. Sundin, G. Tzialas, P. Vasey,
R. Venken, R. Wohed and P. Wolper.

REFERENCES

Allen J.F. (1983) Maintaining knowledge about temporal in-

tervals. CACM, 26( 11) Nov.

Anderson. M. & van Assche. F. (1986) Report on task AI:

research into the ability to use rules to describe the busi-

ness and its activities. Internal Report EQ28/R2/Final.

James Martin Associates. Brussels. Belgium.

Batini. C. & Di Battiste. G. (1988) A methodology for con-

ceptual documentation and maintenance. Information

Systems. 13(3).297-318.

Greenspan, S.J. (1984) Requirements modeling: a

knowledge representation approach to software require-

ments definition. Technical Report No. CSAG-155.

University of Toronto.

Kim. W .• Banarjee. J .• Chou. H.T., Garza, J.F. & Woelk.
D. Composite object support in object-oriented database

systems. In: Proceedings of the 2nd Intemational Con-

ference on Object-Oriented Programming Systems.

Language and Applications. Orlando. FL.

Kim. W., Bertino. E. & Garza. J.F. (1989) Composite

objects revisited. Sigmod Aecord 18(2). 66-79.

Ladkin. P. (1987) Logical time pieces. AI Expert Aug. 58-

67.

Lorie. R., Plouffe. W. (1983) Complex objects and their use

in design transactions. In: Proceedings of Databases for

Engineering Applications, Database Week 1983 (ACM),

San Jose. CA.
Loucopoulos. P. (1989) The RUBRIC Project-Integrating

E-R. Object and Rule-based Paradigms, Workshop

session on Design Paradigms. European Conference on

Object Oriented Programming (ECOOP). 10-13 July,

Nottingham. UK.

Loucopoulos, P. and Champion, R. (1988) A knowledge

based approach to requirements engineering using

method and domain knowledge. Journal of Knowledge-

Based Systems, June. 1(3), 179-187.

Maddison, R. (1983) Information System Methodologies.

Wiley-Heyden.
Olle, T.W. et al. (eds) (1983) CAIS-Information System

Design Methodologies: A Comparative Review, North-

Holland Publishing Co .. Amsterdam.
Olle, TW. et al. (eds) (1986) CRIS3-lmproving the

Practice, North-Holland Publishing Co., Amsterdam.

Rabitti. F .. Woelk, D. & Kin, W. (1988) A model of

authorization for object-oriented and semantic



r·

I \~. 'II '

databases, In: Proceedings of the Intemational Confer-

ence on Extending Database Technology, Venice, Italy,

March.

Theodoulidis, C., Wangler, B. & loucopoulos, P. (1990)
Requirements specification in TEMPORA. In: Proceed-

ings of the 2nd Nordic Conference on Advanced Informa-

tion Systems Engineering (CAiSE90), Kista. Sweden.
van Assche, F., layzell, P.J., loucopoulos, P. &

Speltincx, G. (1988) Information systems development: a

rule-based approach. Journal of Knowledge Based
Systems, September, 1(4),227-234.

Villain, M.B. (1988) A system for reasoning about time.
Proceedings of AAAI-82, Pittsburgh, USA.

Villain, M.B. & Kautz. H. (1986) Constraint propagation

algorithms for temporal reasoning. Proceedings of
AMI-86.

Widom, J. & Finkelstein, S.J. (1989) A syntax and
semantics for set-oriented production rules in rela tional

database systems. SIGMOD Record, Vol. 18, No_3.

Biographies

Pericles loucopoulos is Professor of Information

Systems at the Department of Computation, UMIST.
His research interests include development methods

for data intensive systems, requirements engineering

and databases. His research work has been supported
by grants from SERC/Alvey, and the Commission of the

European Communities under the ESPRIT and AIM
programmes. He is a Fellow of the British Computer
Society and a member of IEEE. He is the author and co-

author of three books and over 50 papers.

Peter McBrien holds a BA in Computer Science from St
Johns, Cambridge. He worked at Racal on realtime radar

simulators and at ICl on the Alvey 'Pure logic language'

project. He is currently a Research Assistant at Imperial
College. His research interests include temporal

databases, graph re-writing for logic languages, exe-

cutable temporal language and meta-level programming.
Francois Schumacker is an Inginuer Civil Electrician

(Informatique) and holds the Degree of Electrical
Engineer in Computer Science from the University of

Liege. He currently works as a Research Engineer in the

Computer Science Department of the University of
Liege. His research interests are in the area of temporal

logics and temporal databases.

Babis Theodoulidis holds a BSc in Computer Science
from the Univeristy of Patras, a MSc from the University

of Glasgow and a PhD from UMIST. He currently works
as a Research Assistant in the Department of Computa-

tion, UMIST. His research interests are in the areas of
design approaches to data-intensive systems, concep-

tual modelling and temporal databases.
Vassili Kopanas holds a BSc in Electrical Engineering

from the National Technical University of Athens, and a

MSc from UMIST. He is currently Research Assistant in
the Department of Computation. UMIST. His research

interests include conceptual modelling, deductive

databases and active databases.
Benkt Wangler is a technical manager at SISU and a

faculty member of the University of Stockholm. He has
been involved in many R&D projects, in collaboration
with industry, in the areas of systems development and

CASE. His research interests are in the areas of
databases. CASE and conceptual modelling.


	page1
	titles
	- I 
	I 
	'. I 
	, "~I 
	1 
	[~J 
	Integrating database technology / 
	rule-based systems and temporal reasoning 
	for effective information systems: 
	P Loucopoulos," P McBrien,t F Schumacker,t B Theodoulidis," 

	images
	image1
	image2


	page2
	titles
	] 
	::.~~: :~~:~~:'.~~~' ~'j 

	images
	image1
	image2
	image3


	page3
	images
	image1
	image2


	page4
	titles
	.-.-.- .•.. -- ... .-- .... -, .. _----~. ~-- --- - ------ - . 

	images
	image1
	image2
	image3
	image4


	page5
	titles
	~AI 
	B l~ 
	It c II 
	L~ 
	~ 
	r-------, 
	L -.! 
	L ~_~ 
	r--------, 
	a r-' b 
	- 
	a r-,--' 
	~o­ 
	il 
	'! 
	I 
	i 
	! 
	I 
	I 
	I 
	\- 
	I 

	images
	image1
	image2
	image3
	image4
	image5
	image6


	page6
	titles
	B1-1 
	.. 
	, 
	;.:;.f;~E;:~~:~:~~ :J 
	I 
	I 
	i 
	j I 
	.. __ . __ ._-~-- ~-------- ----- ... -.--- -------.--- ----_._--------~---.---=-,. 

	images
	image1
	image2
	image3
	image4
	image5
	image6
	image7
	image8
	image9
	image10
	image11
	image12
	image13


	page7
	images
	image1


	page8
	titles
	.. 
	::,_~~:-'>::'.~":: :.::c .?:; 

	images
	image1
	image2
	image3
	image4


	page9
	titles
	.••••.. ~ •• _"I"'""""...,......"...,.~ __ -._ ... ----- --'''--.' .. 'h_. __ •..•. _ 

	images
	image1


	page10
	titles
	.. -" .. - 
	._------~ .•.. _~ ... ---- ------_ .•..• ~_ .• -.- - -- .. _-_-. .... ---~--...;-..-~~ .. 

	images
	image1
	image2
	image3
	image4
	image5


	page11
	titles
	,-----------., 
	r---------, 
	Collecting information 
	An example of the ERL and TL 
	'I 
	I 
	:1 
	'j 
	] 
	_~.tF---,.--_.~---- .. _----- - ---- .. --.--. --.-,'.-- 

	images
	image1
	image2
	image3
	image4
	image5
	image6

	tables
	table1


	page12
	titles
	. ,", 
	~);~;;:~~~~~?~1 
	'_-U'--.'_. ._ - -.'.' . _, --- - ,,,,,-. -- .. --. - - -.-----.'-.. ...•.• __ .....,..""""' ••••.• ..".._. 

	images
	image1


	page13
	titles
	I 
	, 

	images
	image1


	page14
	titles
	. , 
	·:~~~t\~~t~) 
	------.--------- ----- ----------------------,.--,------.,...,---.-- 

	images
	image1
	image2
	image3


	page15
	titles
	..• 
	~\ 
	I 

	images
	image1
	image2
	image3


	page16
	titles
	.... " .. ; .... "'-- '".~ 
	: :":~:f:~::~::~~~~4 
	, 

	images
	image1
	image2
	image3
	image4


	page17
	titles
	~~~--~_. ----~,.-------------_._-_._- 
	______________ ... r- __ ~ ·.·- .. - --

	images
	image1
	image2
	image3
	image4
	image5
	image6

	tables
	table1

	page18
	titles
	•.. ~:~-tj: ~,~::t:.~-~:;.=~
	.. ~ .
	:.': ... :;~ :<.>~ :'~
	. ' ..
	..
	.. - ' ·~<c(:··:)
	. .
	j
	:

	images
	image1
	image2
	image3
	image4
	image5

	page19
	titles
	. ,
	II
	II

	images
	image1

	page20
	titles
	. "
	·~t~~li~&:i~·~
	"----

	images
	image1
	image2
	image3
	image4

	page21
	titles
	.---

	images
	image1
	image2
	image3
	image4

	page22
	titles
	.~ .:.=-,~ :~:4~ .. ~/~
	;' :.."-;:~~::';;:!.~:.:~,.'.?
	.
	. '
	:-~-=-~:.:~~:~ ·~t
	~-~---- ...•.•.. ---,~._-~ ----~._- •...•

	images
	image1
	image2

	page23
	titles
	.~~_~,~.-.~ .. ~ __ ..•.... ~__ ~ _ ___'_ __ . -_---..l .
	ACKNOWLEDGEMENTS
	This paper summarizes the contribution to the TEMPORA project of the following: R.
	REFERENCES

	images
	image1

	page24
	titles
	r·
	I \~
	. 'I
	Biographies

	images
	image1
	image2
	image3

