Report No. 4

December 1993

INTUITIVE TOOLS FOR
INFORMATION RETRIEVAL

— Requirements and Architecture

Ulf Wingstedt
Peter Rosengren
Marie Bern
Peeter Kool

SwEDISH INSTITUTE FOR SYSTEMS DEVELOPMENT

| SISU |

sniosatidorA bas algsoeniops A —

thetzg il T
FEETRImZOR et
I - owved sl
{ oo Bised

Intuitive Tools for Information Retrieval
— Requirements and Architecture

Ulf Wingstedt
Peter Rosengren
Marie Bern
Peeter Kool

Swedish Institute for Systems Development (SISU)
Electrum 212, S-164 40 Kista, Sweden

Df@sisnsa
[peterros @sisu.sd

marie @sisu.se
kool@sisu.sd

Abstract

This report focuses on end-user tools for information retrieval and
addresses requirements on their functionality and user interface as
specified in the Intuitive Project. The purpose of the end-user tools is to
make it possible to use multimedia information stored in a set of
databases. The tools will support the user in the following important
subtasks of information retrieval: Navigation, Selection, Browsing, and
Presentation, providing the user with an overview of available
information, support for query formulation as well as seeking by
inspection and understanding of results.

mailto:ulf@sisu.se
mailto:peterros@sisu.se
mailto:kool@sisu.se

Publisher: Thomas Falk
Editor-in-Chief: Janis A Bubenko Jr
Editorial Advisory Board: Eva Lindencrona, Bjorn Nilsson, Benkt Wangler

Editorial Production Manager: Yngve Pavasson

ISSN 1103-1700
ISRN SISU-REP--04--SE

Contents

T

Introduction 1

Navigator 6

2.1 Views 7
2.2 Control 8
2.3 Queries About Data 9

Selector 10
3.1 Graphical Query Interface 11

Browser 13

41 The Overview Problem 13
4.2 Browsing Structures 15

Presenter 18

5.1 Understanding of Query Results 18
5.2 Link Markers 19

Tools Internal Architecture 21

6.1 Functional Modules 22
6.2 Generic Tool Architecture 23

Future work 26

References 27

ginainad

T scliaubonind

5 wlunivel
T oaesiv 1%
8 lotnel 2%
8 e fanh sehmi} L=

0t sioeiss
If sagheml sl wairgsyl: T E

B roswosE
gY meldd weinwQ a7 LB
Of 2owleu pewesH Sk

. 8 wrreasit
8!’ m@ﬂ ml@ i En]t‘“ e ER r'u [E
gt smahEt) LB

€ swtneflricid lomel sloaT
8% geiugulM ooy A
£ swinefifed ool shonng £33

3% lwow piuind

oy

n

- s

Y

$3 zaonenial

B3

1. Introduction

This report is the second in a series of SISU reports from the Intuitive
Project. The Intuitive Project is an ESPRIT III project in which SISU is a
participant. The objective of the Intuitive project is to provide efficient and
easy to use solutions for end-users to access heterogeneous information
sources.

The reports document the work carried out by SISU during the first year of
the Intuitive Project. Two other SISU reports are currently available; Rosen-
gren et al [Rosengren93c] give an overview of the Intuitive approach while
Bemn et al [Bern93] report on two prototypes being built. The Intuitive
Project has also been described in two published research papers where
Rosengren et al place a special focus on the use of ER models for
information retrieval [Rosengren93a] and experiences from prototyping
[Rosengren93b].

The four key components in the architecture of the Intuitive System are:
e Multimodal Interaction Manager

* End-user Tools
* Intelligent Dialogue Manager
» Data Access Layer

The role of the Multimodal Interaction Manager is to allow the user to input
his request with a combination of speech and pointing. The End-user Tools
provide the user with a visual interface and functionality for the retrieval of
information from large heterogeneous databases. The Dialogue Manager is
responsible for interpreting user requests according to the user task and
initiating appropriate actions in the system. Finally, the Data Access Layer
is the glue that binds the different information resources together, providing
the end-user tools with data.

This report focuses on the end-user tools and addresses requirements on
their functionality and user interface. The aim of the end-user tools is to .
make it possible to use multimedia information stored in a set of databases.
The four main objectives to be met by these tools are:

e Provide an overview and understanding of available information.
* Support the user in expressing his information needs as a query to the
system. The tools should provide a short mental distance between users'

information needs and expressing a query with the tools.

* Help users understand and interpret the results from querying the
databases.

Report No. 4 — December 1993
Swedish Institute for Systems Development 1

rioifouboting . F

iutnd ol mod g U2 Yo 2ansr & o1 beoes: af) o nugey el T
al 112)% raidw o sompong I9 TIAS2 ok & tanjor] ovgeoml i o™
Sengoitie shivorg of 2 Jooiorq swiivial o o oviiuetvo st L Liney
Hstnyoini eupsnsgotetdl 2vo0e O) a1az-boe w0l 29 .00l i W Gl e
i ' € B

6wy R ad? ganub UEIE vl e hstnes bow =0 avoiol shongn 30T
- A aliniisvs 7hnvmin 92 ehoge URLE wdic awl Jomorl svitisad wii
w fosorgge weitiminl s 3o waimave as svig (E0nwigesgo] I 4 ome
isiuind sdT Siivd gaisd seqpaiong o 30 Moges | Ve B ¥ rod

fw 2a9geq Homoen beifzildeg owr ni bodincesb aeed wals 1d * Lo
alabom J0 Yo sw o ge 2wl Isioga 2 svaly e oeng el
ol meTt cenonanxs Ve [ofCrereusen Al oumisa wtam ot

S0 dngay e R

36 ki@ ovaumnl 227 o smataalidow sl o Stosouninos vl 2
" yopesaM pojistwied bbeaithe™s -

N TS U

mgeswid el okl isgdbal .

Mged 2ee.h R ¢

: i o1 1020 orlf Woilik ot 2i vseepsb soltuny sl by noh. id = 0 s wl 1

0o rovu-tind 5qT gabioq brie daseqs Jo audiidoe,) = difs azup o
¥ h’m a1 101 {mﬁmjlﬂm bre sulhstor lopady LoLoe e Fli e’ e
wrgenaM sugolitl s seadatal evssaogorsed vymil Hond dubart sl
15 Basd i sdd o 20ibaoons Pawpw o0y pmitevTied ul ddaoaem
Byst masuoA mnCl ods linai ovaae o o 200t 98GR qs B0 5T
ibivonq .rlisgos 2501p0esT nolwsroind tagfiib 54 sheda 108 soly wl
el it a ddacd cpn g oo

giaamedupsy 2oizambhe his sloot 3een-biaw ofl ao 2eeue s nonst <l
8 2on! raeu-bad 9f) o mis odT sc@Mraits el bos vil woiany vsdl
feinh Yo toz & ni buyitz noitserct s sibsaitlum sau 11 iciang B SN

o afoot Szorl) ¢4 tear od of 2ovnostdo o wrd AT

Jaoeissmclal sldslses 1o geibamizsshau bos woiim o an e »
8 o} T 8 % heso AOMSINOOT 1l geieTIgRs B bodb wll nligyud ¢

Tseu asuvied soaunib s mord? & sbivwig bluads clocs 907 e
et ol ik Qioop 5 gaRegRs bus th-an clic i

i} goigsaap ol @isea wib gsta) bas besrastion avu gl &0 o

i IESS 14 P

bike | 5 gte—ammly b and
H spesalelallnzn- ane oL L L b

T Sy 4 A R Wl w1 3 T |

* Provide a seamless interaction allowing the users to switch between
different operations in a non-obtrusive way.

The end-user tool's knowledge regarding the underlying databases will be
based entirely on conceptual models. The idea of conceptual models is to
capture and represent the semantics of data stored in a database in terms
familiar to users, not in terms of the underlying data structure. The use of
conceptual models will thus provide increased usability as well as shield the
tools' implementation from specific database technologies.

A variety of information types will be supported by Intuitive, such as pictu-
res, drawings, video, and business data (structured data). These information
types will reside in a set of databases which are integrated through the data
access layer of the Intuitive system architecture. As Rosengren et al explain
[Rosengren93c], the Tools are built around a 3-schema level architecture -
database level, conceptual level and presentation level, see figure 1.1.

Presentation level

Conceptual level

View 1

Employee

Database level

Fig. 1.1 The three schema levels of the architecture

Report No. 4 — December 1993
2 Swedish Institute for Systems Development

At the database level each database is described by a logical database model
and has a specific access language. Examples of databases include a
relational database with SQL, a document category system with free text
search and a picture database with keyword searches. The conceptual level
constitutes the conceptual modelling of real-world objects within a
particular application. Information about an object (or entity class) at this
level might be distributed over several databases; for instance, information
about a Project Entity could be project data stored in a relational database,
the project description found in a full text database, and a picture with
project participants in a picture database.

At the presentation level, presentation aspects such as visual appearance and
sequence of presentation, are described. Depending on a user and his task, a
Project Entity can be presented at different levels of detail and with different
types of presentation methods depending on the presentation model for that
entity class.

The end-user tools will support the user in the following information
retrieval tasks:

* Selection. The user will be given support for formulating queries that
select a set of information entities.

* Navigation. The user will be provided with an overview of the available
information resources at a conceptual level.

* Browsing. The user will be assisted in seeking information by inspect-
ing information entities at the instance level.

* Presentation. The user will be supported in understanding and inter-
preting the result brought to him as a result of a search in the inform-
ation resources.

The support for these tasks may be implemented in various ways, using
different methods depending on what is found to be the most suitable imple-
mentation for a given task.

To support the user in the above tasks four types of end-user tools will be
implemented:

e Selector

¢ Navigator
¢ Browser

* Presenter

These tools will be general tools, which means that they can be applied in
different applications for different sets of databases without re-

Report No. 4 — December 1993
Swedish Institute for Systems Development 3

programming. Intuitive should therefore be quick and easily customisable.
This requirement will be met by the Tools since they will read all relevant
domain and application specific information such as conceptual model
structures and graphics from the Intuitive Dictionary and configure
themselves according to this information. These issues are discussed in
more detail in Bern et al [Bern93].

The different tools will provide a seamless manner of interaction where the
user can switch between different subtasks of the Information Retrieval pro-
cess. The tools will have specific graphical interfaces and may be controlled
by mouse, voice or keyboard. They will also be able to be controlled by the
Dialogue Manager. In this way Intuitive will provide a mixed-initiative style
of interaction, i.e. the tools may be controlled by either the user or the
system.

The Tools will be built using a modular architecture providing several
advantages:

» Flexibility, which makes it possible to change parts of the Tools layer
even at a late stage in the project. For instance, if a major research
breakthrough is made in the area of pictorial query languages we will
be able to exploit this by simply changing the Picture Selector of
Intuitive, without needing to change the whole Tools layer.

* The complexity of implementation is broken down into several smaller
well-defined pieces.

e The various subtasks in the user's information retrieval process are re-
flected by software modules that support the subtasks. This will allow
the user to handle complex information retrieval problems.

e The architecture is extendable, which makes it possible to add new
tools and support for new types of data if necessary. It also meets the
requirement that Intuitive should be configurable to meet different
demands from different users. Some users may only want support for
Pictures and Business Data while others miay want support for a whole
range of information types.

The report is organised as follows:

Chapter 2 discusses navigation issues and identifies the need for a user to
look at a conceptual map at different levels of detail. Three types of view of
a conceptual model are described. The conclusion from the views discussion
is that the Navigator Tools must be highly flexible with regard to definition
and selection of views.

Report No. 4 — December 1993
4 Swedish Institute for Systems Development

Chapter 3 discusses various aspects of visual query systems are discussed,
leading to requirements for the Selector Tools.

Chapter 4 discusses browsing in data spaces. The problem of getting an
overview of large quantities of data is analysed in detail and the difference
between a Fish-eye View and a Bird's-eye View approach to browsing is
described. Thumbnail representations for different information types are
discussed.

Chapter 5 addresses the need to support the user in understanding a query
result. The use of background maps for the presentation of results is discus-
sed and the extent to which this technique is dependent upon a specific
application is analysed. A need to have presentation models is identified.
Presentation of links to other data items and the kind of link marker the
Presenter Tools should use are also analysed in this chapter.

The internal architecture of the tools is presented in Chapter 6.

Chapter 7, finally, outlines our future work.

Report No. 4 — December 1993
Swedish Institute for Systems Development S

2. Navigator

The purpose of navigation is to enable the user to express his or her infor-
mation requirements by providing an overview of the available classes of
information, their relationships, and their semantic definitions. Intuitive
tools will include support for the navigational task in order to guide and
encourage the user to explore data abstractions and meta data to obtain a
general understanding of the database contents. The specific tool responsible
for this support is called a Navigator.

In literature, as for instance in the SNAP system [Bryce86], the task of
Navigation is often called Schema Browsing. Within Intuitive, however, we
will use the term Navigation when considering abstractions of data, and re-
strict Browsing to actual database instances.

Within Intuitive, the support for Navigation is based on conceptual models
having at least the same level of semantic expressiveness as traditional ER
models, although we envisage a need for more expressive models. An
extended ER approach is therefore considered, that includes the notion of
generalisation/specialisation as well as aggregation (partly). In particular,
we will use ER concepts developed by the Tempora project
[Loucopoulos91] in order to achieve the required expressiveness.

Navigation within the available information resources at an abstract level
requires that the conceptual model describing the information resources can
be visualised for the user.

As is recognised (by for instance the developers of the SNAP system), the
single most important component in a conceptual model management sys-
tem is the visual presentation of the model. The basic approach for visuali-
sation of the conceptual model in an Intuitive Application is a variant of ER
diagrams with sufficient expressiveness. However, in specific Intuitive ap-
plications, other visualisation techniques may be used if regarded as more
suitable according to user characteristics, the task to support, or the orga-
nisation in which the application is used. For instance, maps and pictures
may be used for visualisation. Two alternative methods of visualising a
conceptual model can be seen in figures 2.1 and 2.2, where icons are used in
figure 2.1 to illustrate different concepts.

Report No. 4 — December 1993
6 Swedish Institute for Systems Development

: Intuitive Navigator

File Edit Export

Figure 2.1 Navigator with conceptual model visualised using icons.

Intuitive Navigator '

File Edit Export

Figure 2.2 Navigator with conceptual model visualised using boxes.

2.1 Views

A visualisation of a conceptual model, an ER diagram (or ER schema), of-
ten includes a vast number of schema items such as entity and relationship
classes to describe the information resource. In order for the Navigator to
support the user in locating the schema items of interest, it must support a
division of the complete ER schema into various sub-views.

The grouping of schema items into views should be guided by requirements
according to domain and user characteristics such as tasks and skills. It
should be possible to create not only application general views common to

Report No. 4 — December 1993
Swedish Institute for Systems Development 7

all users, but also special views for groups of users as well as user-defined
VIEWS.

The overall conceptual model may be divided into views in three main
ways, one horizontal and two vertical view types. Firstly, there may be
horizontal views at a specific level of abstraction and detail but showing
different parts of the model. The sub-part of the conceptual model included
in the view is a conceptual unit, i.e. it consists of entity classes that belong
together semantically.

Secondly, there may be vertical views that for a specific part of the model
show a different number of details. The conceptual model will include a
large amount of information that may not be of the same importance to all
users at all times. The user should therefore be able to hide and show
details.

Thirdly, the model may be divided into several levels of abstraction. Entity
classes at a lower level of abstraction may be aggregated into new entity
classes at a higher level. Consider, for example, entity and attribute classes
such as Door, Wheel, Trunk etc, that may be seen at a specific level of ab-
straction. At the higher level, these (and others) may be aggregated into the
entity class Car. Entities based on aggregation of other entities may be deri-
ved (computed) in run-time, 1.e. they are not required to be explicitly stored
in the information resource.

The important task of designing the application general views will be per-
formed by the Intuitive designer.

In order to support user-defined views, the Navigator will include functio-
nality that allows the user to pick schema items from existing views (e.g. the
Complete Model view) and include them in the new view. The user should
also be able to change the layout of the view, placement of schema items,
choice of visualisation icons etc.

The above requirements suggest a highly flexible tool from the point of
view of definition and selection of views. However, all applications will

probably not supply all this functionality for all users, but rather use a
predefined set of general views.

2.2 Control

In cases where the visualisation of the model, the view, is too large to be vi-
ewed in a single piece, the Navigator will provide functionality such as
scrolling and panning. In addition, a zooming function will be provided in
order to show an enlargement of a part of the visualisation.

Report No. 4 — December 1993
8 Swedish Institute for Systems Development

While navigating in the conceptual model, the user should always have the
opportunity of relating the current visible sub-part of the model to the ove-
rall context.

2.3 Queries About Data

Keeping in mind the large information resources that will be supported by
an Intuitive system, we believe that users regularly need to query not only
for instances from the databases, but also for meta data, i.e. data about the
instances. Such a query might be "What information do we have about
Patients?" where the answer might be a list of attributes for the entity class
Patient: Name, Age, Treatments, Symptoms, Pictures.

The Navigator should also support the user in finding certain entity classes,
relationship classes, attributes etc, i.e. finding the view(s) where they ap-
pear.

Report No. 4 — December 1993
Swedish Institute for Systems Development 9

3. Selector

Since the Intuitive System is targeted for general access to corporate infor-
mation resources we can expect that the number of infrequent database users
will be high. The ease of use and naturalness of the query language provided
by different tools is of therefore utmost importance.

Several recommendations for the design of database user interfaces have
been documented: Elmasri and Larson identify the following requirements
for a user-friendly database interface [Elmasri85]:

» The interface should not assume that the user knows the contents of the
database or the exact procedure to formulate a query.

e The interface should allow the user to view the database in the way he
finds most comfortable when formulating a particular query, and to
proceed through query formulation differently.

* Formulation of queries that only differ slightly should be possible
without having to perform all major reformulation steps.

* The query formulation mechanisms should be powerful enough to al-
low formulation of complex queries.

As discussed by Rosengren et al, we propose to base the Intuitive User
Interface as far as possible on concepts familiar to the user allowing him to
express his information needs in terms of concepts used in his daily working
life [Rosengren93c]. This means that the user will perceive querying
Intuitive as selecting information entities of interest, rather than selecting
tuples in a table as is often the case in traditional systems. From the Hybris
project our experience is that this type of metaphor is easy to comprehend,
at least in business data applications [Karlgren91], [Lundh89], [Sahlin90].
We also believe that this will be true for other types of data that can be mo-
delled and stored in relational databases.

The selection problems are closely related to the navigation problems des-
cribed in the previous chapter. A user cannot make selections unless he has
a clear view and understanding of the information content in the database. It
might be natural to consider integrating these two types of interface and let-
ting the user express his query directly by pointing and clicking in a concep-
tual map.

The other choice is to have two separate interfaces - one that only visualises
the conceptual model and a separate query interface.

Report No. 4 — December 1993
10 Swedish Institute for Systems Development

The separation of the query interface from the navigation interface has three
implications:

e Itis possible to express more semantics in the conceptual model. With a
combined query/navigation interface the user will suffer from infor-
mation overload if there are too many symbols expressing relationship,
cardinalities, is-a hierarchies etc, while the user is trying to formulate a

query.

» The visual query language can be made more powerful and allow the
user to express complex types of queries.

» The use of the tools can be more complicated and require more inter
action steps for the user, unless the interaction is carefully designed.

The combined query/navigation approach has been used in Hybris
[Lundh89], where a simple conceptual model is visualised, showing only
basic relationships between entities. The user can query the database by di-
rectly selecting entities in the ER diagram and then making restrictions. This
has proved to be a solution that is easy to use, although more complex
queries are difficult and in some cases even impossible to formulate.

For Intuitive we believe that it is wise to start with the assumption that the
navigation interface and query interface are separate.

3.1 Graphical Query Interface

Two types of graphical query interface can be considered - diagrammatic or
iconic [Catarci91]. The diagrammatic approach means that the user expres-
ses his queries directly in a diagram representing the conceptual model. An
iconic interface means that the user forms a language expression by choo-
sing different icons representing not only entities and attributes but also
operators and other language constructs.

The iconic approach implies more work when customising Intuitive for a
specific application. Icons have to be chosen or designed for this particular
application. Also, many information entities represent abstract concepts
which may not be easy to visualise. We therefore choose the diagrammatic
approach initially, but since the Selectors are modular we will have the op-
tion of switching to an iconic approach later. The iconic language approach
might also work better with the multi-modal style of interaction.

A requirement is that the graphical query interface of the Selector should
only allow syntactically correct queries to be formulated.

Although the main purpose of the query interface is to allow formulation of
ad-hoc queries, requirements elicited from real world applications have

Report No. 4 — December 1993
Swedish Institute for Systems Development : 11

shown the need for adaptable predefined queries [Bern93]. The Selector will
therefore support the inclusion of such queries where the user can supply
control parameters when querying at run time.

The query interface supports value domains and also hides complex nume-
rical codes from the user. One example is the Medical Demonstrator where
codes for representing different parts of a body such as CRA for Cranium
[Bern93] are stored in the database. In this case, the system will allow the
user to input the full name 'Cranium’ instead of the code 'CRA'. An alterna-
tive method of input could be to point at various parts in a picture of a skele-
ton, see figure 3.1 below:

Selector

T

Figure 3.1 Pictures can be used to represent value domains.

Report No. 4 — December 1993
12 Swedish Institute for Systems Development

4. Browser

The role of the Browser is to allow the user to browse at an instance level as
opposed to the conceptual level. In this way our tools support the user in
understanding the database's content both with navigation and browsing.
Note, however, that in a2 multimedia database, browsing is also an important
technique in searching for information since users seem to be using this
technique intuitively. Selection of a picture from a picture library usually
involves selecting a subject and then browsing the picture instances in order
to find the one sought.

When users browse they actually look at the different instances of informa-
tion stored in a database. This does not necessarily mean that users look at
real items, it could mean that they look at a representation of the items, for
instance picture thumbnails or document icons. The important thing is that
there is a one-to-one mapping between what you see when browsing and
what is in the resource.

In order to build usable tools that support the browsing task there are two
general key issues: overview and the browsing structure (ordering).

4.1 The Overview Problem

The overview problem increases as the number of instances grow. The sys-
tem should present the set of instances in such a way that the user is given
an overview of the available information.

Several techniques have been proposed and used in order to solve the over-
view problem.

One of the more common approaches is the use of thumbnails. Thumbnails
are condensed versions of instances, for instance a smaller picture (lower
resolution) is used instead of the full resolution picture, see figure 4.1.

A thumbnail need not always be a picture, it could also be an icon, a piece
of text etc. Thumbnails are useful, but are still not enough when sets are
large since they will be too small to convey meaningful information to the
user.

Thumbnails can be used in combination with other techniques for improving
the overview. For instance, there is the possibility to use a "Bird's-eye
view”, [Erickson91], showing the position of the current (displayed) instan-
ces in the set. This gives the user feedback on the size of the set and the
current position in that set. This is useful when it is impossible to display the
whole set.

Report No. 4 — December 1993
Swedish Institute for Systems Development 13

Intuitive Navigator Intuitive Sclector o

o
R
File Edit Export] Fi
 PROTECTS : F § i
4

Browser

Figure 4.1 The use of thumbnails can provide the user with an
overview of large data sets. In the lower left corner a Browser
displays thumbnails of pictures.

Fish-eye views [Furnas86] are another proposed technique. The fish-eye
view works in the same way as a fish-eye camera lens. The parts that are
visible in the middle of the picture are larger than the parts in the peripheral.
In this way the overview is maintained without losing too much detail. A
problem with pure fish-eye views, however, is that the views are distorted.

A very interesting implementation of a sort of fish-eye view is the
Perspective Wall [Mackinley 91] and Cone Trees [Robertson91] that are
part of the Information Visualizer [Card91]. These implementations use 3-D
animation to create the views.

The Perspective Wall is especially interesting since it represents a fish-eye
view of an ordered list. It gives the user feedback on the set size and current
position. The metaphor used in the Perspective Wall is a wall represented in
3-D with three surfaces (figure 4.2) on which the items are placed.

Front Above

Figure 4.2: The Perspective Wall

Report No. 4 — December 1993
14 Swedish Institute for Systems Development

The effect of the perspective wall is that it implicitly creates a fish-eye view
that is intuitive to human beings. Although no formal user studies have been
made with the perspective wall, it seems to be a feasible idea.

Since Intuitive will deal with large information spaces, a combination of
techniques will have to be applied in order to provide an overview for the
user. The use of thumbnails in combination with fish-eye view or bird's-eye
view seems to be the only safe way of providing sufficient overview of large
information spaces.

A specific problem in picture browsing using thumbnails is the size of the
thumbnails. The thumbnails must not be too small, since the user will use
them to find the pictures. The smallest size for picture thumbnails will
depend on the application. An X-ray thumbnail might have to be Jarger than
that of a car picture thumbnail in order to convey enough selection in-
formation.

The thumbnail used for videos in current applications is a descriptive pic-
ture. There might also be a need for time information, i.e. the length of the
video. Video mosaics could be a reasonable solution in some cases. A video
mosaic is a collection of videos that are played simultaneously without
sound. The video showed in a mosaic should be compressed in both size and
time in order to give an acceptable overview.

4.2 Browsing Structures

Browsing through items in a set implies that some kind of browsing struc-
ture is used. Examples of browsing structures are:

» No structure at all. One or more items are arbitrarily brought to the
user upon request.

» Some sort of spatial orientation. For instance, when the user moves
to the left, pictures become more and more blue.

* Hierarchy. Consider, for instance, a document database that uses a
hierarchical subject model.

In general, browsing structures will have dimensionality depending on the
number of attributes that are available for each instance. For example, a
picture data resource that has three attributes: date, photographer and loca-
tion, will be a 3-dimensional browsing structure supporting browsing by
date order, by photographer, and location. In addition, browsable attributes
do not have to be stored, they could also be deduced in the same way that an
average colour attribute can be deduced from the value of all pixels in the
picture.

Report No. 4 — December 1993
Swedish Institute for Systems Development 15

Using n-dimensional browsing structures will introduce an orientation pro-
blem or, to be more exact, what degree of flexibility the system will allow
the user for moving arbitrarily along any dimension. There are three ways in
which a dimension can work:

« Movable: The user can ”scroll” freely back and forth along this dimen-
sion.

e Fixed: The dimension is set to a fixed value, for instance photographer
= "Linda Cartney"

e Any: When it is not used in the browsing structure.

Visualising more than three dimensions simultaneously is very complex and
may cause usability problems. It is suitable therefore to set the absolute
maximum number of movable dimensions to three. In fact, only user testing
can resolve the maximum number of movable dimensions that can be of
practical use; it might even be less than three.

The problems of building meaningful general browsers that do not use a
browsing structure at all are probably outside the scope of Intuitive. Instead,
Intuitive will require that all resources have some kind of browsing structu-
res either explicit or deduced.

Usually, structures that can be used for browsing are already contained in
the information resource. The typical case today is that the data are ordered
in a list or in a hierarchy directly in the information resources. But it is
questionable as to whether these structures are optimal for the browsing
process. The result of a user task analysis for a specific application will de-
termine which browsing structures are necessary.

Since a user of our system navigates and formulates queries at a conceptual
level, there is also a need for the Browser to explain the result in conceptual
terms. This will allow the user to have a better understanding of the result
and increase the usability of the system. For instance, if a user asks for
information regarding projects, persons and organisations, the answer
should be brought to the user in terms of those entity classes, and not using
the codes of the databases as is often the case in current commercial
products.

Several attempts to build browsers that reflect the conceptual structure have
been reported. One of the early attempts was LID "Living in a database”
[Fogg84]. In LID, browsing was the main technique for database querying.
We do not think that this is a realistic strategy in real databases mainly for
reasons of performance. In industrial applications, the number of instances
of an entity class will be too large to view on the screen. Browsers in our

Report No. 4 — December 1993
16 Swedish Institute for Systems Development

system therefore work mainly on limited data sets, but it is still possible for
the user to work according to LID principles.

Each of the entity classes in a result set is rendered as visually separated
objects in the Browser user interface with the relationships connecting them
together. The exact rendering depends on the type of data or media, pictures
are rendered as a set of thumbnails, business data as tuples etc. The
interaction style is an extension of Synchronised Browsing in the Pasta-3
system [Kuntz89]. Synchronised browsing occurs when more than one
entity is browsed and the entities are associated with relationships. The main
idea is that the user selects one entity from an entity class and can see all the
related entities in other entity classes.

Report No. 4 — December 1993
Swedish Institute for Systems Development (74

5. Presenter

The way in which retrieved results are presented has a great impact on two
specific stages in the user's information retrieval process - (1) evaluation of
results, and (2) refinement of needs.

It has been shown that the evaluation phase of an information retrieval pro-
cess is decisive for whether a query is successful or not [Katzeff89]. When
interpreting results of the query, users not only evaluate whether the results
fit their information needs, but also whether they have formulated a query
that correctly corresponds to their information needs. The system's response
should display the result in a way that supports these two types of evaluation
in the decision process. Moreover, the form of presentation should be
congruent with the user's expectations within the task being undertaken.

In our system the main task for the Presenter is to support the understanding
of the information retrieved. As explained by Rosengren et al
[Rosengren93a] [Rosengren93b], the Dictionary contains a presentation
model. The Presenter decides on how to present an entity based on the pre-
sentation model and user preferences.

In addition, the Presenter is responsible for the visualisation of hyperlinks,
see [Rosengren93c] for an explanation of this feature. We are combining
two different methods of link visualisation. The first link type is called
overlay links and is visualised as a colour indicated area in the entity pre-
sented, e.g. a picture. The second link visualisation method is to use link
buttons with descriptive names.

It is an important user requirement that the Intuitive tools support the export
of retrieved data into external tools such as word processors and
spreadsheets. Besides having default presentation capabilities, the Presenter
will therefore allow the export of Intuitive data formats to other programs to
enhance the usability of the information retrieved.

5.1 Understanding of Query Resuilts

The user should be able to read a text and see a picture easily, not merely
see symbols that represent the data instance. This means that functionality to
present the data in full resolution is needed. Presentation models that dis play
the relationships between data are also needed. Further, to enhance the
understanding of the selected information, presentation models that display
relevant data connected to the selected concept are needed.

Kerner and Thiel [Kerner91] suggest the box presentation method for sup-
porting the user in the evaluation of results. The box presentation method
supports the understanding of a retrieved data instance by presenting the

Report No. 4 — December 1993
18 Swedish Institute for Systems Development

information requested in a context of other related data not explicitly asked
for in the original query. The positions of data instances within the box
express the relative importance of the information. In western civilisation
information is read from top left to bottom right. The most important infor-
mation is presented in the upper left corner of the presentation area. The
concept to be focused on should therefore be displayed in this corner.

Another solution is to present the result of a query in the context of the
query itself. The information "15 000" has for example little meaning in iso-
lation. If the user knows that this was the result of the query "What is the
salary for Mr. X?" the information is meaningful. To help the user form a
mental view of the context in which the information is presented, the query
retrieving the information should always be visible in parallel with the pre-
sentation.

An alternative method of visualising the context of the result is in a map.
The map should represent something static and known to the user, a context
in which the user could perceive the result. The map should be visible to the
user during the complete work session with the system.

The best context in which to present a result of a selection is however not
the same for every result in the system. It must be possible to change con-
text for the presentation. It is also central that the context corresponds to the
specific task the user is dealing with. How maps can be used for presenta-
tion purposes is an issue for further work.

5.2 Link Markers

An important issue to consider is what link marker the system should use. A
link marker is a visible or audible indicator in the node to mark the presence
of a link. Some examples are:

» Data that serve as source or destination for links are highlighted or
encircled. No information about the type or destination of the link
1s shown.

* Data that serve as source or destination for links are highlighted or
encircled, but only when the cursor moves over the area. No infor-
mation about the type or destination of the link is shown.

* The source and destination for links are marked by icons. No infor-
mation about the type or destination of the link is shown.

* The source and destination for links are marked by icons. The icon
contains information about the type and destination of the link.

Report No. 4 — December 1993
Swedish Institute for Systems Development 19

A Presenter should be able to handle all of these types of link visualisation.
Moreover, since the links will be named, a pop-up menu can be used for
link access.

The Dialogue Manager can use information in the Dictionary regarding
users and tasks to enable the showing of, among many different links, the
links relevant for a specific user in a certain situation.

The most difficult question concerning hyperlinks however, is how the user
gets an overview of the nodes connected by the links [Katzeff92]. The pur-
pose of the hyperlinks is to encourage the user to explore the data. To
encourage the user successfully, the user needs to be secure in his
interaction with the system. Quick, easy back-tracking and help in main-
taining the global sense of location during link traversal are important issues
to consider. As a consequence, when an instance is displayed by a Presenter,
the Navigator will highlight the entity class to which the instance belongs.

Report No. 4 — December 1993
20 Swedish Institute for Systems Development

6. Tools Internal Architecture

The development of a generic Tool architecture has been driven by the
following design goals derived from requirements on usability, exploitation,
implementation and maintenance:

* Automatic configuration at run-time. Tools' appearances will be confi-
gured automatically from Dictionary information at run-time. This me-
ans that it is possible, without programming, to change tools' appea-
rance, feel and behaviour by changing the contents of the Dictionary.

e Allowing external program control. It should be possible for other
software components of the Intuitive system to control the tools'
behaviour at run-time.

* Modularity at Tool level. As shown by Bern et al, the set of tools
actually used may vary from application to application [Bern93].
For instance, if video is to be incorporated in an application, a Video
Presenter should be able to do this without changing other tools.

* Look and feel independence. It should be possible for a certain tool to
have variable layout, within limits, in the user interface in different ap-
plications. This implies that program code for user interface graphics
should be separated from the tool's functionality code.

* Reuse of tool sub-modules in new tools. Parts of a tool's functionality
may be reused in new tools. These modules should be constructed in
a general way to allow reuse.

The first two goals require tools to respond dynamically at run-time to re-
quests from other programs or changes in the Dictionary. Tools should
therefore provide mechanisms for retrieval of Dictionary information and a
messaging protocol for external control.

The other three represent developers' requirements for changeability and
reuse. Modularity at the tool level implies that different tools used in an
application should be independent of each other, while look and feel
independence implies that the user interface should be independent of
functionality within a tool. In addition, a tool should as far as possible be
divided into functional modules that may be reused in the construction of
new tools.

Report No. 4 — December 1993
Swedish Institute for Systems Development 21

To summarise the design goals, we see requirements on flexibility in two
separate phases, namely at run-time and design time (development time).
The architecture presented below has been designed to fulfil these require-
ments.

The generic architecture for Tools is described in the following section. The
generic architecture will be used for each tool.

6.1 Functional Modules

All tools consist of one or more Functional Modules (core functionality) that
are separate functional units that handle a certain aspect of functionality
needed in the tool.

The functional modules are divided into three main parts as shown in figure
6.1 below.

Functional
Module

Functionality

Fig. 6.1 Functional Module architecture

Many of the functional modules used in the Intuitive tools will handle some
user interaction aspect such as providing a visual query language. A
functional module may thus have a full-featured graphical user interface.

In order to support developers in changing the look and feel of the user in-
terface, it will be separated as much as possible from the code implementing
the actual functionality. A call-back structure from interface events to func-
tions will be used.

Finally, every functional module also has an API (Application
Programmer's Interface) allowing developers to integrate the module with
other software components (including other functional modules) into a Tool.

Report No. 4 — December 1993
22 Swedish Institute for Systems Development

6.2 Generic Tool Architecture

A developer's view of the generic Tool architecture is described in Figure
6.2. A tool is assembled from a set of functional modules with an optional
user interface portion. The glue holding the tool together is the code in the
Tool Specific Functionality part, which integrates the various functional
modules and also implements additional non-general functionality including
additional user interface.

The functional modules should be treated as "black boxes", i.e. the internals
of the modules should be of no concemn to the developer of a new tool.
Rather, the developer will use the API's from the functional modules for ac-
cess to their functionality.

The use of functional modules in a tool will be hidden from the other com-
ponents of an Intuitive system, external to the tool. When developing a new
tool, the developer has to provide a specific Tool API that includes all func-
tions required by other components. At run-time, these other components
only need to have knowledge about the Tool API that provides a coherent
access mechanism for the tool's specific combination of functionality.

Generic
Tool

Tool
Specific
Func.

Func. |Func.
Mod. |[Mod.

Fig. 6.2 The Generic Tool Architecture; the developers view.

A run-time view of the general architecture is shown in figure 6.3, where the
data flow within a Tool and between a Tool and other modules of the
Intuitive system is described.

Report No. 4 — December 1993
Swedish Institute for Systems Development 23

v e - A e A A e

Y

’_Screen Manager

-

- interpreted

events . o - e - = - o
7 Mulfimodal ™,
T s Integrafion
Event event
O |l interpreter f Tk
: APCR
@) i R B,
* Dialogue
L oot tool |, Manager_;
confrol 77T T AT T
i Meta Data el S s
Cache descr.
meta meta data
datfa data cal
query query
S . AT S Yok,
. Local Intuitive Server K

Fig. 6.3 Data flow within a Tool and between a Tool
and other modules of the Intuitive system.

The two white boxes, i.e. Event Interpreter and Meta Data Cache, internal to
the tool, are examples of functional modules. In fact, these two modules will
appear in all four tools Navigator, Selector, Browser, and Presenter.

The first Intuitive component collecting user events from mouse and keybo-
ard is the Screen Manager. It interprets gesture into events such as click(x,y)
where x and y are co-ordinates where the mouse was clicked. Also more
complex gestures can be resolved, such as wipe out (cross over).

The events are passed on from the Screen Manager to the tool. There are
three types of event:

« Private events, that are private to the tool and not passed on to the
Multimodal Interaction Manager. The tool can give feedback immedia-
tely.

« Notifiable events. Feedback can be given directly by the tool on these
events. The Multimodal Integration Module is only notified about its
occurrence.

o Public events. The tool decides on a default action, but passes the event
on to the Multimodal Integration Module.

Report No. 4 — December 1993
Swedish Institute for Systems Development

24

The functional module Event Interpreter will interpret the low level event
from the Screen Manager using knowledge of both user interface and Tools'
internal data structures and functions into an interpreted event. The event is
passed on to the Multimodal Integration (MI) for integration with spoken
input coming from the speech hardware. The Multimodal Integration Mo-
dule might also initiate event feedback through the Tool's API.

The Dialogue Manager will be the central hub for all co-ordination and
message passing between different tools. It will also handle all interaction
regarding queries on data with the Local Intuitive Server Services Interface
(LIS) except the actual retrieval of data which will be handled by the
appropriate tool, the tool being triggered by the Dialogue Manager.

A basic requirement is that tools must work at a conceptual level, hiding
technical issues from the user [Rosengren93a]. In order to achieve this, all
tools will make extensive use of information in the Intuitive Dictionaries
regarding mapping from conceptual to technical levels. Moreover, tool con-
figuration information regarding user interface layout, for instance, will be
stored in the dictionary. This implies that the amount of queries between the
tools and the LIS may be extensive. In order to minimise this
communication between the client and the server part of Intuitive, we plan
to use a Meta Data Cache in the tools.

Report No. 4 — December 1993
Swedish Institure for Systems Development 25

7. Future work

An important aspect that needs further research is design methodology.
Given an application and a set of users' tasks, application developers will be
faced with questions such as, "How do I find a suitable visual language and
what visual cues do I need to visualise the underlying conceptual model?"
To provide support for fast and efficient construction of highly usable ER-
based Information Retrieval Systems we need to develop a design methodo-
Jogy that is easy to follow for application developers [Bern93].

Due to the flexible and modular architecture of our system we will be able
to experiment with different approaches for individual tools, that allow us to
test different schema visualisation techniques within the Navigator easily
without affecting the rest of the system. We will also experiment with diffe-
rent visual languages in the Selector without changing the rest of the system.
All these opportunities will be exploited in a series of cognitive and
usability tests.

Our further work will also include development and implementation of a
presentation model.

Report No. 4 — December 1993
26 Swedish Institute for Systems Development

References

[Bern93]

[Bryce86]

[Card91]

[Catarci91]

[Elmasri85]

[Erickson91]

[Fogg84]

[Furnas86]

[Karlgren91]

Report No. 4 — December 1993
Swedish Institute for Systems Development

M. Bem, P. Kool, P. Rosengren, U.
Wingstedt, "Application Design with the
Intuitive Tools - Two Case Studies",
SISU Report No. 5, December 1993.

D. Bryce, R. Hull, "SNAP, a Graphics-
Based Schema Manager", Proceedings of
the 2nd IEEE International Conference on
Data Engineering, pp 151-164, 1986.

S. Card, G. Robertson, J. Mackinlay, "The
Information Visualizer, an Information
Workspace", Proceedings of CHI91
Human Factors in Computing Systems,
181-188, New York: ACM, 1991.

T. Catarci, A. Massari, G. Santucci, "Iconic
and Diagrammatic Interfaces: An Integrated
Approach", IEEE Workshop on Visual
Languages, 1991, pp 199-204.

R. Elmasri, J. Larson, "A Graphical Query
Facility for ER Databases", Proceedings of
the 4th International Conference of Entity
Relationship Approach, 1985.

T. Erickson, G. Salomon, "Designing a
Desktop Information System: Observations
and Issues", Proceedings CHI ‘91 Human
Factors in Computing Systems, 49-54.
New York: ACM, 1991.

D. Fogg, "Lessons from a Living in a
Database Graphical Query Interface",
Proceedings ACM Sigmod, 1984.

G. W. Furnas. "Generalized fish-eye views",
Proceedings of CHI"86 Human Factors in
Computing Systems, 16-23,

New York: ACM, 1986.

K. Karlgren, M. Wideroth, "En utvirdering
av Hybris", SISU Technical Report 12.

2F

[Katzeff89]

[Katzeff92]

[Kerner91]

[Kuntz89]

[Larson86]

[Loucopoulos91]

[Lundh89]

[Mackinlay 91]

[Robertson91]

28

C. Katzeff, "Cognitive Aspects of Human-
Computer Interaction: Mental Models in
Database Query Writing",
Doktorsavhandling, Psykologiska institu-
tionen, Stockholms Universitet, 1989.

C. Katzeff. "Overblicksproblemet i hyper-
media", SISU Technical Report 18,
in Swedish, 1992.

A. Kerner, U. Thiel, "Graphical Support
for Users” Inferences within Retrieval
Dialogues”, IEEE Workshop on Visual
Languages, 1991.

M. Kuntz, R. Melchert, "Ergonomic Schema
Design and Browsing with more Semantics
in the Pasta-3 Interface for E-R DBMSs",
Proceedings of the 8th International
Conference of Entity Relationship
Approach, 1989,

J. Larson. "A Visual Approach to Browsing
in a Database Environment", [EEE
Computer, June 1986.

P. Loucopoulos, B. Wangler, P. McBrien, F.
Schumacker, B. Theodoulidis, V. Kopanas,
"Integrating Database Technology, Rule
Based Systems and Temporal Reasoning for
Effective Information Systems: The
Tempora Paradigm", Information Systems
Journal, Vol. 1, No. 1, April 1991.

J. Lundh, P. Rosengren, , "Hybris - A first
step towards efficient information resource
management", SISU report No. 5, 1989,

J. Mackinlay, G. Robertson, S. Card. "The
Perspective Wall: Detail and Context
Smoothly Integrated", Proceedings of
CHI"91 Human Factors in Computing
Systems, 173-179, New York: ACM, 1991,

G. Robertson, J. Mackinlay, S. Card, "Cone
Trees: Animated 3-D Visualizations of
Hierarchical Information", Proceedings of
CHI"91 Human Factors in Computing
Systems, 189-194, New York: ACM, 1991,

Report No. 4 — December 1993
Swedish Institute for Systems Development

	page1
	titles
	Report No. 4
	TOOLS FOR
	- Requirements and Architecture

	images
	image1

	page2
	page3
	titles
	Intuitive Tools for Information Retrieval
	Abstract

	page4
	page5
	titles
	Contents

	page6
	page7
	titles
	1. Introduction
	•

	page8
	page9
	images
	image1

	page10
	tables
	table1

	page11
	page12
	page13
	titles
	2. Navigator

	page14
	titles
	..
	2.1 Views

	images
	image1
	image2
	image3

	page15
	titles
	2.2 Centrel

	page16
	titles
	2.3 Queries About Data

	page17
	titles
	3. Seleetor

	page18
	titles
	3.1 Graphical Query Interface

	page19
	images
	image1

	page20
	titles
	4. Browser
	4.1 The Overview Problem

	page21
	titles
	,

	images
	image1
	image2
	image3

	page22
	titles
	4.2 Browsing Structures

	page23
	page24
	page25
	titles
	5. Presenter
	5.1 Understanding of Query Results

	page26
	titles
	5.2 Link Markers

	page27
	page28
	titles
	6. Tools Internai Architecture

	page29
	titles
	6.1 Functional Modules
	Functional

	images
	image1

	page30
	titles
	6.2 Generic Tool Architecture
	Generic

	images
	image1

	page31
	titles
	;- -Screen -Mönöger- 'I
	L
	;~-- ----------- ----------- ,
	t Locallntuitive Server l
	',------------------------------_/

	images
	image1

	page32
	page33
	titles
	7. Future work

	page34
	titles
	References

	page35
	page36

