SISU
rapport
nr 11

Reverse modeling

from
Relational Schemata
to
Entity-Relationship Schemata

Katalin Kalman

SISU
Svenska Institutet fér Systemutveckling
Box 1250, 164 28 KISTA

Reverse Modeling

from
Relational Database Schemata
to
Entity-Relationship Schemata

ISSN: 0282-9924

Copyright
SISU - Svenska Institutet for Systemutveckling
Januari 1991

FORORD

I manga organisationer finns idag ett stort antal databas- och
informationssystemtillimpningar, som utvecklats kontinuer-
ligt under en lang period. Ett problem med dessa system ar
att den exakta forstielsen av de data som finns i systemen ofta
gatt forlorad under arens lopp. Sjilvfallet forsvarar detta en
effektiv anvdandning av systemen, och det ar darfor viktigt att
pa olika satt forséka bygga upp en béttre forstaelse av de data
som redan finns i en organisation. Ett sitt att géra detta &r att
beskriva data med hjilp av en konceptuell modell, som ligger
pa en hégre abstraktionsnivi dn traditionella datamodeller.

Det finns ocksd andra fall dd det &ar viktigt att kunna
beskriva innehallet i en databas med ett konceptuellt schema,
t ex om man skall forse en databas med ett granssnitt i
naturligt sprdk eller nidgon annan form av avancerat
granssnitt. S4dana grinssnitt kriver ofta mer information om
de data som finns i databasen 4n vad som kan uttryckas i ett
databasschema. Den ytterligare information som behévs kan
da beskrivas i det konceptuella schemat.

Om man skall éversitta ett stort databasschema till ett
konceptuellt schema ir det till stor nytta att ha tillgdng till en
metod som stéd i dversdttningsprocessen. En sddan metod
kan inte reduceras till en algoritm som automatiskt oversatter
ett databasschema till ett konceptuellt schema. Eftersom
konceptuella scheman kan innehdlla mer information &n
databasscheman &ir det ndédvindigt att en anvéandare tillfér
ytterligare information vid éversittningen. En viktig del av en
metod blir darfér att beskriva hur en anviandare pa ett enkelt
satt skall kunna tillhandahdlla den extra information som
behévs. 1 SISU-rapporten Reverse modeling from Relational
Schemata to Entity-Relationship Schemata av Katalin Kalman
beskrivs tre olika metoder f6r Gversdttning av relations-
databasscheman till ER-scheman (eng Entity-Relationship
Schemata). Férdelar och nackdelar med de beskrivna
metoderna diskuteras utforligt. Katalin Kalman har ocksa
skrivit ett program som implementerar en av metoderna.
Denna rapport utgér dven Katalin Kalmans examensuppsats
for hennes Master of Science.

ACKNOWLEDGEMENTS

I would like to thank my advisor Janis Bubenko and I would
especially like to thank Paul Johannesson and Benkt Wangler,
my thesis advisors, who have generously contributed their time
and expertise for this project and whose support I have found
highly invaluable.

ABSTRACT

Both the database and the conceptual schema can be seen as
structures representing relationships between objects in
the real world. A conceptual schema, however, contains
more semantic information, regarding these objects and
relationships, than does the database schema. Generating a
conceptual schema from a database schema is a process,
known as reverse modeling, in which semantic information
unavailable in the database schema is needed. This missing
information must, in some way, be obtained by the
modeling process. How much of this information is
generated automatically and how much must be manually
supplied by a user varies from method to method. It is
argued that a high degree of automation is desirable in
reverse modeling.

Two methods that generate a conceptual schema from
a relational database schema are discussed. Their strengths
and weaknesses are assessed and proposals for
improvements are made. A third method, based on the
strengths of the other two and building on suggestions for
improvements for these methods, is then presented.

This new method makes use of a dictionary, containing
synonyms of attribute names, for the modeling process.
This dictionary becomes updated with each occasion a
conceptual schema is created. This causes the system to
improve with every use, thus, rendering it dynamic and
enabling it to function as a learning system. Another
advantage of the method is its high degree of automation
resulting in a lesser need for user interaction.

The three methods, discussed, have been implemented
as prototypes. They are fully functioning systems which
take relational database schemata as input and produce
graphical representations of conceptual schemata.

TABLE OF CONTENTS

1 INOAUCHO c.vveeveeeneereeereeseesnssnsssnsssessmosmssesnsessessasssessssssassssssssssssssssssssssssssassansns 1
2 Clarification of Concepts and Constructs.......cccveierieciniscnereenenenensiicssiinnnns 2
2.1 The Relational Database.......cccievrmerissercsacnsssssesssnnsssnnssssanssesssnassssnnessnss 2
2.2 The Extended Entity Relationship Model..........ccccociiiuemnniiinnninnan 2
2.3 Reverse MOdeling..........oouiiiiesminnsnssnisnssnsssssasesssasssssessnsssssssasssssssasansans 3
3 Historical Background and Related Research.......cccoccceeeiiiciiiiiiiinnnin, 5
3.1 General Background.........ccoceieeiiiiirinninniniecsnnnsssessssssssessssssssansssnneas 5
3.2 Research in Forward Modeling.........ccccccvnreeerenssniciianccnscianennesencansnnn 5
3.3 Research in Reverse Modeling........eeeeueeeeeiiiiiiiiernnininniaieiieiiin, 6
4 An Algorithm Based on Attribute Name Similarity........ccceeeuienecennnne. 8
A1 TORTOCHOTIONY, 1-csossesvinmummsnmnsiansiansn sivsmspmmuss e e e ios AT DA PR o sh 38 8
4.2 A Transformation Strategy in Nine Steps........cccccvieiiniinennninan. 8
4.3 MAKEMODEL: An Implementation of the Algorithm.............. 14
4.4 Testing the Al sesspessnses 14
4.5 Critiquie of thie AlgOTIIINT. .ccc.sscmimsimsaissons imnsrssarknisen v messdn nres 15
4.8 Concluding Evaluation..cvissisasssansssssiasmssnmmsmunmmssvossnessavesspasss 26
5 An Algorithm Based on Inclusion Dependency........ccccceerenenienccneinenns 27
5.1 T ONACHONL .o cexssusneseensarsnsarmmsnvemsosnsaenssssasaponssssssssiihsnass dxssusospssimmamssnsiin o &
5.2 A Transformation Strategy in FOur Steps.......ccscumsevsnneesseanssscsss 27
5.3 Subsumption of Inclusion Dependencies.....c...cccueriirememmmnniiinnens 35
5.4 Handling AIbiglious CaseS........ceeerssiessnisssassssncssssessnsssncsssnsassasssansosss 37
5.5 An EXAMIPIE.....cccociveireninriresnerisnsnesresessssssssstssssssssessssssssssssssssssnsssenansansas 38
5.6 Concluding Evaluation........ccceceseiruissicssssnnssssssessessnsssssnssnssessnsssnssnsesaes 40
6 A Combined APPIOACHL......cccosvtirrrrrtrraerrresecsiesiessesstassnssasssssssssssnssanessansanans 41
6.1 INrOAUCHON.eeeeeevreeeeiicrnestecseesssaeseesssneessssesssasssnsssssnesssssssssssssnanensas 41
6.2 A Transformation Strategy in Seven Steps..........ccccviiiieiinnnnnnnnn. 41
5.3 A1l ERAINPIC wcrnvrismrsessenastsssmmrmmmrsssssnsanssasssnssnsonistssisss s ssisssasss somenssons 51
6.4 Concluding Evaluation.........ccoeereereeseeseinnsnsnsenessnessssssssnmsisnssnsessene 65b
7 Concluding Remarks and Recommended Further Research....... 57
7.1 Inclusion of Background Knowledge.......ccceveveeeeiuniiiinnniiiinninnnne. B7
7.2 Semantically Richer SChema.........cooeiiiiiiinnnesciniciniiinieea, 58

1

INTRODUCTION

Databases are usually organized with the objective of making the data,
contained therein, easily retrievable by various online and offline systems.
These systems make use of the information in the database to produce
reports as well as to display collections of data on a screen in response to
online queries. They do not, however, produce a description of
associations between concepts depicted by the data items. These
associations constitute vital semantic information which often gets lost in
the process of encoding information to create a database. This commonly
results in a situation where the ones with access to the original
information are unavailable and those inheriting these databases lack the
understanding for using and maintaining them. This missing semantic
information can be recaptured by extracting data objects from the database
and showing interrelationships which may exist between these. A
conceptual (semantic) model provides such an interpretation. This
process of recapturing the missing semantic information is known as
reverse modeling.

The task of representing a set of facts, in a database, in terms of a
conceptual model can be carried out in a number of different ways. It can
be done entirely manually, or with varying degrees of mechanization.
However, regardless of the degree of mechanization chosen, it is necessary
to have the proper tools and resources. This is an essential prerequisite for
the successful completion of any task. The resource, in this case, is the set
of facts; that is to say, a relational database. The tool is the method used for
choosing the components (entities and relationships) of the conceptual
model.

The facts, making up the database schema, must be organized in a
manner which facilitates the formation of semantic relationships. If the
original database is not structured in this way, it must be changed. This is
a multi step process which is carried out by applying the tool to the
resource as many times and in as many ways as is necessary to fine tune
the database so that it eventually can be turned into a conceptual model.

Aside from shaping the resources, the tool is also used for choosing
one semantic relationship when several potential ones exist. A number of
different relationships can, sometimes, be extracted from the same set of
facts describing a relational schema. Which particular structure is chosen,
to express a situation, is dependent on the way the situation is interpreted.
In such a case, it is the function of the tool to acquire the desired
interpretation and extract the appropriate relationship from the set of
facts in the database.

This tool which fine tunes the database, resolves ambiguous situations
and makes other sorts of decisions, is, of course, the algorithm. In this
paper, two such algorithms for creating a conceptual model out of a
relational database are described, analyzed and criticized. These are, then,
combined to yield an improved method. The first algorithm to be
examined is one proposed by Navathe and Awong in [Navathe87]. The
second of these has been proposed by Johannesson and Kalman in
[Johannesson89]. Each of the three algorithms has been implemented in
Prolog and fully tested.

2

CLARIFICATION OF CONCEPTS AND CONSTRUCTS

2.1 THE RELATIONAL DATABASE

A relational database, as described in [Korth86] and [Date86], is made up of
relations. A relation is a table (that is to say, a two dimensional array)
composed of attributes and values for the attributes. Each relation in the
database has a unique name and each attribute in the relation has a unique
name. An attribute or set of attributes which uniquely distinguishes an
instance (a row containing the values of all the attributes of the relation)
from any other instance in the relation is designated to be a key. A relation
may contain several keys. One of the keys is designated as the primary key
of the relation. The remaining keys are called candidate keys. An attribute
or a set of attributes which is not a key is called a none key.

A relational database will be represented as shown in the two
databases below. The name of the relation! will come first, outside of
parentheses and will be written in capital letters. Attribute names will be
contained in parentheses. Primary and candidate keys will always be
underlined and none key attributes will not be underlined. Candidate keys
will be written with hollowed letters.

Database:

HUNGRY_PERSON(Person._Name. S8 _mwm)
WANTS(Person_lName Food Name)
FOOD(Food_Name)
SWEDISH_F00D(Food_Name)
CHINESE_FOOD(Food_Ilame)

Database:

HOTEL(Hotel Name,Addr)
ROOM(Hotel Name. Room*)

2.2 THE EXTENDED ENTITY RELATIONSHIP MODEL

An EER model is a semantic model which is composed of entities, weak
entities, relationships, and subclasses. An entity is an object in a particular
environment. Entities are connected to each other by means of
relationships. A subclass is an entity which fulfills a subclass role in a
subclass/superclass relationship between two entity types. That is to say,
the entity which is a subclass is a subset of the entity which is its
superclass. A weak entity is an entity who's existence is dependent on
another entity.

1 For the sake of simplicity even a relation without instances (usually known as relation
scheme) will be refered to as a relation in this paper. When a relation including instances is
referenced , it will be explicitly stated that this is the case.

3

To illustrate the components of the extended ER model described above,
graphical representations of the conceptual models corresponding to the
database relations described in the previous section are presented in the
figures below. In these representations, entities are denoted by
rectangles, weak entities by a rectangle inside of another, relationships by
diamonds, and subclasses by concave arcs placed on the connecting line
between the subclass entity and its superclass. In the example to the left,
wants is a relationship between entity types hungry_person and food,
the entities swedish_food and chinese_food are subclasses to the entity
type food. In the example to the right room is a weak entity dependent
of the entity hotel.

hungry_person |

<~ vants—> hotel

food
AN roam_|
swedish chinese
food food
Figure 2.1 The EER model. Figure 2.2 Weak entity.

2.3 REVERSE MODELING

In order to understand the term reverse modeling, or reverse
engineering as it is sometimes called, it is necessary to first define the
term forward modeling/engineering?. Forward modeling is a concept
which generally refers to the process of encoding information in some way.
It has been defined in [Chikofsky90] as the traditional process of moving
from high-level abstractions and logical, implementation independent
designs to the physical implementation of a system by following a sequence
of going from requirements through to the implementation of the design.
The implementation can be a computer program, a database, or any
construct which reflects the original specification in some encoded form.
The aim of reverse modeling is to regain information lost in the
encoding process of forward modeling. It is the process of going from an
implementation, such as a database, to the original specifications which
include an understanding of the intent and inner workings of the
implemented system. Chikofsky perceives the goal of reverse modeling to
be twofold. The first is to identify the system's components and their
interrelationships. The second is to create representations of the system

2 Since the words modeling and engineering are synonymous in this context, it is not
necessary to write both, and , hence, only the word modeling will be used from here on in.

in another form or at a higher level of abstraction. In order to achieve this,
there is often a need to add domain knowledge, external information,
deduction or fuzzy reasoning to the subject system to identify higher level
abstractions beyond those obtained directly by examining the system itself.
Another definition, and one which, perhaps, is more tailored to the
database area, can be found in [Bruce89]. Here, Bruce defines reverse
modeling as the inference and documentation, to a specified level of detail,
of models of data structures and business rules underlying one or more
current or proposed data processing systems.

3

HISTORICAL BACKGROUND AND RELATED RESEARCH

3.1 GENERAL BACKGROUND

The most widely used approach for conceptual design is the ER (entity-
relationship) model, originally proposed by Chen [Chen76]. The
fundamental modelling constructs of the ER model are entities and
relationships. Entities are the principal objects about which information is
to be collected. Entities of the same kind are collected into entity types,
e.g. Employee or Department. (In this paper entity will often be written
instead of entity type and context will be relied upon to disambiguate the
meaning; the same applies for relationship and relationship type.)
Attributes are used to give the entities and relationships descriptive
properties such as color and weight. Some attributes may be identifiers,
i.e. they can be used to uniquely distinguish among the occurrences of an
entity type. Relationships represent associations between entities.

To incorporate more semantics into the ER model several extensions
of the model have been proposed, e.g. in [EIMasri85] and [Teorey86]. The
most important of these is the addition of the subtype construct. A
subtype relationship from one entity type to another expresses a
subclass/superclass ISA relationship between the two entity types. An
entity type is said to be a subclass of another entity type if every
occurrence of the subclass is also an occurrence of the superclass. An
example of a subtype relationship is CHINESE_FOOD ISA FOOD.

Some important contributions in the area of forward modeling in the
field of databases include [Briand84] and [Shoval87]. Contributions to
reverse engineering include [Briand87], [Davis84], [Nilsson84],
[Dumpala83], [Davis87], [Navathe87], and [Johannesson89]. The two most
complete methodologies proposed for translating from the relational
model to an extended ER model seem to be [Navathe87] and
[Johannesson89].

A brief discussion of each of the above mentioned papers, with the
exception of [Navathe87] and [Johannesson89], follows. These two papers
are discussed in great detail later in the paper and are, thus, not treated in
this section.

3.2 RESEARCH IN FORWARD MODELING

The paper [Briand84] describes how to translate from an ER diagram into a
relational schema. The entities and relationships of an ER diagram are
translated to prolog facts. These facts are then translated into a Bachman
diagram, made up of record types and set types. These are then, used to
generate the relations of a relation schema.

This method is interesting for two reasons. One is that it takes an
"expert system" approach, showing how one can explain the translation
performed to a user. Second, it compares the ER model to semantic
networks, pointing out how similar the two really are and showing how
easily an ER diagram can be extracted from a semantic network.

[Shoval87] presents the system ADDS which is used to assist a database
designer in designing a database schema. ADDS automatically creates a
database schema out of a conceptual schema expressed as an information
structure diagram of the Binary-Relationship Model. The database schema
obtained consists of normalized record types.

3.3 RESEARCH IN REVERSE MODELING

The first paper to propose a mapping to an ER model is [Dumpala83].
Here, three methods are presented, to translate each of the three,
network, hierarchical, and relational models into an ER model. The
translation algorithm for the relational database is a seven step procedure
which is based on the idea of first classifying the relations, then creating
different data structures for the ER model based on the different
classifications. The translation algorithm for the network model is a
simple three step procedure where for each record type an entity is
created, for each link a relationship is created and for each recursive link a
relationship for the same entity is created. In the hierarchical model, all
trees that can be connected are connected, then nodes are mapped to
entities and edges to relationships. The paper [Navathe87] can be seen as
an extension of this work in the case of the translation from the Relational
Model. Due to this, the paper is important due to its historical interest.

In [Briand87], a method is presented for creating an extended ER
diagram from a minimal cover of functional dependencies. A functional
dependency graph representing the relations of the database, as well as a
set of inclusion dependencies are used to create entities, relationships and
a set of aggregations which are to make up the new ER schema. First, a
reduced functional dependency graph is derived. The attribute
components of this graph are, then, examined to determine if they
participate in an inclusion dependency, if not they become primary keys of
entities. Relationships are created out of nodes composed of several
attributes. The information acquired from functional dependencies is used
to produce M-M and N-1 mappings of relationships. Attributes are, then,
assigned to entities and relationships according to functional
dependencies.

The paper is fairly theoretical and not as easily accessible as
[Navathe87], which is also due to the fact that it is not very well written.
However, it seems to propose a robust and well working algorithm for
creating an ER diagram.

In [Davis84] a method translating a conventional file system into an ER
diagram is presented. First a modified functional data model which is the
current physical model of the file system is extracted using the physical
data units of the file. This intermediary physical model is then converted
to a logical model by following a conversion algorithm to remove the
physicalness of the data until a logical view is obtained. This new logical
model contains the entities and relationships of the data and is the final
ER conceptual data model.

Two methods of translation from a relational schema to an ER schema
are discussed in [Davis87]. The first method described is one in which a
relational database model is translated into an entity relationship data
model in which the structure of the data along with the inherent behavior
of the data are represented in the resulting model. The inherent behavior

7

of the data is determined by inherent constraints such as the condition
that each relationship be of a particular cardinality. The second method,
and that presented in the paper, is one where an ER conceptual model is
created which includes the explicit behavior of the data. By explicit
behavior is meant those constraints that are tangential to the data model
itself. Explicit behavior, for example, is the rule that the salary of an
employee cannot exceed a certain amount, is comprised of constraints
which are subject to change often. The algorithm for the second method
chooses those constraints which have a high probability of modification to
include in the resulting model. The two methods are then compared and
contrasted. The second method is deemed more valuable.

In [Nilsson84], a method for translating a COBOL data structure into an
ER schema is outlined. The translation is done by the COBOL DATA-
SCANNER which takes a record description from the file section of the
data division contained in a structure library (a file containing the record
descriptions from all the programs of an application) and produces a
SYSDOC conceptual schema. SYSDOC is a conceptual schema language
which is similar to the traditional ER schema. Records in the record
description are transformed into entity classes. Elementary items are
transformed into data elements (attributes). Tables are transformed into
entity classes which are then connected to the entity class, derived from
the record, by a relationship. Other relationships must be specified by the
user, as well as all relationship names. The resulting schema can, then, be
expressed in terms of a conventional ER schema which is to be used to
document and thereby maintain COBOL applications.

In [Winans90], Winans and Davis describe a method for translating an
IMS database to an ER model. The built in tree structure of the
hierarchical model of the IMS is used in the translation process. Input to
the algorithm consists of IMS DataBase Definitions (DBDs) which are
processed one at a time. Information about segments, fields, and indexes
within the DBDs are collected and processed to build the RE-ERM (reverse
engineered Entity-Relationship Model). This paper builds on the ideas
presented in [Davis87] and likewise relies on the behavior of the data as
well as on its structure to map to the RE-ERM.

L

AN ALGORITHM BASED ON ATTRIBUTE NAME SIMILARITY

4.1 INTRODUCTION

A method of reverse modeling, which maps a relational database to a
conceptual schema is presented here. It is a method proposed by Navathe

and Awong and further examined in [Kalman89]3. In [Navathe87] two
algorithms are presented. One of these is a ten step procedure, based on
similarity of attribute names in the relations of the database. Attributes
which are the same are expected to have identical names throughout the
database. It is by identifying like attributes of different relations, that
connections between the relations of the database are established.

The data initially available to the mapping process consists of the
relations of a database. The relations are always in the third normal form
and are given without instances.

4.2 A TRANSFORMATION STRATEGY IN NINE STEPS

The algorithm, which maps a relational database to an ER schema, has
been implemented, with minor alterations and a few omissions, in
MAKEMODEL, a program written in Prolog. Input to the program is a
relational schema, that is, relation and attribute names without instances
represented as a set of Prolog facts. These facts are then processed by a

nine step procedure which creates an extended Entity-Relationship
semantic data model containing subclasses as well as mappings of
functional dependencies. Generalization categories have been omitted
here as the usage of the concept is restricted to Navathe and Awong's
paper and has, thus, been deemed too narrow to be considered of enough
value to be employed in this implementation.

The aim of this method is to atomize the process of transformation as
much as possible. However, since more information is contained in the
conceptual schema than in the original database, the process cannot be
totally atomized. Whenever ambiguities, that cannot be resolved
mechanically, arise, MAKEMODEL makes use of user interaction to obtain
the clarification it needs to be able to proceed.

The strategy used by MAKEMODEL to transform Prolog facts depicting
relations in a database to prolog facts representing a conceptual model can,
thus, be described as a process which methodically fine tunes the database,
using a mixture of automatic modification and user interaction. Although
it is a nine step algorithm, it can also be divided into two distinct parts.
Stepl constitutes the first part, the second part consists of the remaining
eight steps. Stepl uses the candidate keys to restructure the relations for
the purpose of making it possible, at a later stage, to find relationships
between them. The candidate keys are in effect neutralized here as they
no longer have any value to the transformation process after this step. All
relations as well as their attributes are classified in this first step.

3 This chapter is an updated version of this paper.

9

A detailed account of the nine step algorithm used by MAKEMODEL is
given below:

STEP1 - Three actions that perform different types of candidate key
substitutions are carried out here:

actionl- The primary key of each relation in the relational database
is read. After reading a primary key, the candidate keys of the
rest of the relations are scanned. If a candidate key is found
which is identical to the primary key under examination, and
there exists a sub/superclass relationship between the two
relations, that candidate key is changed to be the new primary
key of the relation and the relation's former primary key is
changed to be a new candidate key. To find out if such a subclass
superclass relationship exists, a question is put to the user.

An example of how MAKEMODEL processes such a case:

Input: listing produced by MAKEMODEL:
account_holder
Primarg Key: [acctnum]

person
Primary Key: [person_id]
Candidate Key: [acctnum]

company
Primary Key: [company_id]
Candidate Key: [acctnum]

Interaction between MAKEMODEL and the user:

In order to establish whether there exists a sub/super class
relationship between the relations shown below,

please answer the following question(s) by typing yes or no.

Is there a sub/super class relationship between:
company and account_holder?

g
Is there a sub/super class relationship between:
person and account_holder?

g

Result of processing after actionl:
account_holder
Primary Key: [acctnum]

person
Primary Key: [acctnum]
Candidate Key: [person_id]

10

action2-

action3-

company
Primary Key: [acctnum]
Candidate Key: [company_id]

The purpose of candidate key substitutions performed by actionl
is to discover some of the sub/superclass relationships between
relations and to prepare these for further questioning later. In
step9 all sub/superclass relationships are processed.

The primary key of each relation in the relational database is
read. After reading a primary key, the candidate keys of the rest
of the relations are scanned. If the primary key is found to
contain a candidate key of another relation, the part of the
primary key which is equivalent to one of the candidate keys is
replaced by the primary key of the relation which contains that
candidate key.

An example of how MAKEMODEL processes such a case:

Input: listing produced by MAKEMODEL.:
car_sale

Primary Key: [buger_id,eng_serial num,seller_id]
None Key Attributes: [sale_date]

car

Primary Key: [license_num]
Candidate Key: [eng_serial num]
None Key Attributes: [make,model]

Result of processing after action2:
car_sale

Primary Key: [buyer_id license_num,seller_id]
None Key Attributes: [sale_date]

car

Primary Key: [license_num]
Candidate Key: [eng_serial num]
None Key Attributes: [make,model]

The purpose of candidate key substitutions performed by action2
is to provide relations which have nothing linking them to each
other by common elements in their primary keys with such links.
The relation whose primary key was changed, now has a potential
to become a relationship between two or more entities at some
future time.

The candidate key of each relation in the relational DB is read.
After reading a candidate key, the primary keys of the rest of the
relations are scanned. If the candidate key of the relation under
examination is formed by concatenating two or more primary

11

keys, that candidate key becomes the new primary key of the
relation and the previous primary key is made into a new
candidate key.

Input: listing produced by MAKEMODEL:
course_offering

Primary Key: [section_num]

Candidate Key: [course_num,instructor_num]

instructors
Primary Key: [instructer_num]

courses
Primary Key: [course_num]

Result of processing after action3:
course_offering

Primary Key: [course_num,instructor_num]
Candidate Key: [section_num]

The purpose of candidate key substitutions performed by action3
is to identify relations which will later become relationships
between entities.

The next stage is that of classification. First, the relations are classified
into primary typel (PR1), primary type2 (PR2), secondary typel (SR2),
and secondary type2 (SR2):

PR1 - Relations whose primary key does not contain a key of another
relation. (Will map to entities).

PR2 - Relations whose primary key is ID dependent on the key of a PR1
relation. To decide whether an ID dependence exists between two
relations, first the primary key of a relation is examined to see if it
contains the primary key of a PR1 relation. If this proves to be
the case, the user is asked to confirm or deny an ID dependence
between the two relations. (Will map to weak entities).

SR1 - Relations whose primary key is fully formed by concatenating the
primary keys of PR1 and/or PR2 relations. (Will map to
relationships).

SR2 - Relations whose primary key is partially formed by concatenating
the primary keys of PR1 and/or PR2 relations. (Will map to
relationships).

Next, the attributes of all the relations are classified into four categories:
Key Attribute Primary (KAP), Key Attribute General (KAG), Foreign Key
Attribute (FKA), and None Key Attribute (NKA).

KAP - Attributes in the primary key of a secondary relation which also
constitute a primary key of a primary relation. These are used
later (in step6) when processing SR2 relations. These relations
map to relationships, which connect entities whose entity
identifiers are the same as the KAP of the SR2 relation to new
entities created from KAGs.

12

KAG -

FKA -

NKA -

The remaining attributes in the primary key of a secondary
relation which are not KAPs. These give rise to new entities used
in the transformation of SR2 relations.

None primary key attribute that is also a primary key of another
relation. Used (in step7) to establish a relationship between the
entity created by the relation which contains this attribute as an
FKA and the relation which contains the attribute as its primary
key.

None primary key attributes which are not FKAs.

STEP2 - When two or more primary relations have identical primary keys

and there exists a secondary relation which contains this key, it
must be determined which of these primary relations is related to
the secondary relation. This is resolved by asking the user to
identify the primary relation which is relevant.

Interaction between MAKEMODEL and the user:

The attribute ss_num in flies comes either from emp or pilot.
Does ss_num come from emp?

n

Does ss_num come from pilot?

g

Those primary relations identified as not being relevant to the
secondary relation in question are gathered together in a list and
saved to be used later (in steps 5 and 6).

STEP3 - Entity types are created here. For each PRI relation, an entity

type is asserted to the prolog database.

STEP4 - Weak entity types are created. For each PR2 relation, a weak

entity type is asserted to the prolog database.

STEPS - Relationship types are created. First all SR1 relations are read.

Then those primary relations whose primary keys form the
primary key of the SR1 relation are gathered together in a list.
This list is then updated by deleting those relations (now entities)
which have been marked in step2 as being irrelevant to the SR1.
A relationship type containing the of list the entities which are
connected to each other through this new relationship is created
and asserted to the prolog database.

STEPS6 - Relationship types are created from SR2 relations that contain

both KAP and KAG type attributes. For each SR2 relation a list is
produced containing the names of the entities whose identifiers
are the same as the KAPs of the SR2 (the primary relations whose
primary key is the same as the KAP) as well as the names of the
KAG attributes of the SR2. Relations marked as irrelevant for the
SR2 are removed as in step5.

STEP7 -

STEPS -

STEPO -

13

Relationships derived from FKA type attributes are created. For
each relation that contains an FKA type attribute, a relationship
between the entity formed by that relation and the entities whose
identifiers are the same as the FKA attributes contained in the
relation is defined.

Binary relationships are labeled with their corresponding
functional dependencies. Relationships, mapped from SR1 and
SR2 relations, that connect exactly two entities are processed
separately from other relationships. The user is asked to state the
functional dependency which prevails between the two entities
connected by a binary relationship.

Interaction between MAKEMODEL and the user:

In order to assess the functional dependency between |courses|

and |instructors| in relationship <course_offering>, please chose the
correct dependency listed below by typing the number 1, 2, 3, or 4.

There is a functional dependency from |courses| to |instructors|.
There is a functional dependency from |linstructors| to [courses|.
Both of the above functional dependencies exist.
None of the above functional dependencies exist.

il b ol

Subclasses are created. When entities with identical identifiers
are detected, the user is asked to state whether there exists a
sub/superclass relationship between these entities.

Interaction between MAKEMODEL and the user:
Please indicate whether there exists a sub/super class
relationship between the following entities.

E1->E2 denotes that El is a subclass of E2.

emp->person
g

emp->pilot

n

pilot->emp

n
person->pilot
n
pilot->person
g

For each subclass relation identified, subclass(E1,E2) is asserted.
El represents an entity which is a subclass of the entity
represented by E2.

14

4.3 MAKEMODEL: AN IMPLEMENTATION OF THE ALGORITHM

Implementing a method renders it testable. This facilitates the process of
evaluation, which is done for the purpose of determining the validity of a
method. It is, first, by testing with different examples that it becomes
possible to infer something about the accuracy of a method.

MAKEMODEL, an implementation of the algorithm presented in
[Navathe87], was constructed for the purpose of examining that method.
A program description is presented below.

Program Description:

To activate MAKEMODEL, the user types the word start followed by a
period. MAKEMODEL, then, begins its processing by requesting the user
to select a relational database. The user may, choose to use an existing
database, create his/her own database, or supplement an existing database
with new relations.

After establishing an input database to MAKEMODEL, the user is given
an opportunity to view the database. If this option is chosen, then every
relation in the database gets displayed. For each relation, its name is
printed out followed by the attributes which constitute its primary key, the
attributes which constitute any and all candidate keys the relation may
embody, as well as any existing none key attributes.

The nine steps making up the algorithm are executed next. This is
done by the module 'process RDB to CM' which is the principal
component of MAKEMODEL as it is where the mapping from a relational
database to a conceptual model takes place. All questions pertinent to the
processing of the particular database, given as input to the current run, are
asked here and the generated structures corresponding to the conceptual
model are asserted to the Prolog data base.

Finally, the user is given a chance to view the conceptual model
created by MAKEMODEL. This step may be bypassed, in which case, a
concluding remark is printed out and MAKEMODEL is exited. If the user
wishes to see the model, then information about each entity and
relationship produced is printed out and graphical representations of
relationships between the entities are drawn out on the screen.

4.4 TESTING THE ALGORITHM

Prior to reaching the level of competence necessary to criticize any
method, it is important to gain a reasonably good understanding of the
method in question. One way to accomplish this is by using pragmatic
means. The behavior of the method could be observed under various
conditions. This would make it possible for different aspects of the
method to be seen, thereby enabling one to acquire a better understanding
of the method as a whole.
In this case, the algorithm has been closely scrutinized by testing
MAKEMODEL quite thoroughly. A vast number of examples were used as
input to MAKEMODEL and the results carefully noted and recorded.

To appreciate the results obtained from using test examples, it can be
helpful to keep in mind the different types of relationships which can arise
and how MAKEMODEL creates these. A brief recapitulation follows.

15

Four different types of relationships can prevail between entities. The
first is a relationship between a subclass entity and its superclass. The
second is a relationship between an entity and a weak entity. The third is
a relationship between two or more entities in which the relationship has a
name, a relationship identifier and none key attributes. Finally, there is
the relationship between two entities where the relationship has neither a
name nor identifier.

The possibility of a relationship between a subclass entity and its
superclass is recognized whenever there exist two or more relations with
the same primary key. This situation is first isolated in stepl.actionl,
through a user question, whenever a candidate key of a relation matches
the primary key of another relation. The other two candidate key
substitutions can also give rise to this situation. The place where
sub/superclass relationships are actually created is step9. Weak entities
are recognized via user interaction in stepl. They become classified as
PR2 (primary relations) and the relationship is finally created in step4.
Ordinary relationships between two or more entities are recognized by the
fact that their primary keys contain primary keys of other relations. These
relations get labeled as SR1 or SR2 (secondary relations) in stepl and are
processed in different ways, depending on various conditions, in steps 5.6
and 8. The last type of relationship is the FKA. These are created from
relations containing attributes which are also primary keys of other
relations. These attributes are labeled as FKA in stepl and are then set up
as relationships in step7.

It is not difficult to see that the creation of relationships is a rather
elaborate process. The manner in which a relation is turned into an entity
or a relationship is rather opaque and it is, thus, not intuitively clear that
the model generated is the correct one.

The examples used to test the algorithm, were, for the most part,
arbitrary databases selected from various domains. Many were also
somewhat large and rather intricate. The reason for choosing large
examples, is that the shortcomings of the algorithm are, more likely, found
by using examples where more complex situations are depicted.

4.5 CRITIQUE OF THE ALGORITHM

In order for the algorithm to be able to function at all, an important
expectation about the input database must be met. The database must be
set up in such a way that identical attributes have the same names.
Databases are normally not set up in this way. Identical attributes may have
identical names but the names could, just as well, be somewhat varied or
abbreviated in some of the relations. This means that the database must be
changed by hand in order to fulfill the prerequisite required by the
method. This presents a considerable weakness in the algorithm.

Aside from this weakness caused by the necessity of like attributes
having like names, a number of other problems have been found. Ten
important and basic problems inherent in the algorithm and made
apparent by testing MAKEMODEL are presented below. Each problem is
described, the correct model which should have resulted is shown, and a
solution is proposed.

16

(1) - Multi level ID dependenc

Problem description:

The situation in which an entity is ID dependent on another entity which
in turn is ID dependent on a third entity cannot be produced. The reason
for this is that according to the algorithm an entity can only be ID
dependent on a PR1 relation.

In this example the entity Room is
ID dependent on the entity Ward
Hospital which in turn is ID dependent on the
entity Hospital, but this cannot be

represented by MAKEMODEL. Instead,
the two relations Ward and Room
become weak entities ID dependent on

Hospital, an entity created out of a
/ \ PRI relation.

The resulting faulty model is shown
Ward Room in Figure 4.1 to the left.

Figure 4.1. Faulty model involving weak entities.

Proposed solution:
This can be solved by letting a relation be ID dependent on none PR1
relations as well as on PR1 relations.

Figure 4.2 below shows the correct conceptual schema for the
example discussed above.

Hospital _<>; Ward _O_ Room

Figure 4.2 Correct model involving weak entities.

(2) -Sub/super class relationships and the indirect links between these.

Problem description:

When two or more levels of sub/super class relationships exist, the
indirect links should only be represented implicitly in the conceptual
model. i.e. if there were a subclass relationship from an entity C to an
entity B and a subclass relationship from entity B to an entity A, then the
subclass relationship from C to A should not be depicted in the conceptual
model. These indirect links do, however, become allocated. Since
sub/super class relationships are established through user interaction, the
question as to the existence of a connection between A and C would be

17

answered in the affirmative and a direct link between A and C would then
be set up in the conceptual schema.

The link between
Person Opera singer and Person
Person should not be

represented explicitly
k) in the conceptual model. K)
Singer Singer
Figure 4.3 to the left
shows the faulty model)
W created by MAKEMODEL. L
| Figure 4.4 to the right Opera
Opera | shows the correct Singer
Singer conceptual schema.
Figure 4.4
Figure 4.3 Indirect link. Figure 4.4 Indirect link not represented.

Proposed solution:

This problem can be solved by deleting indirect links after all
super/subclass links for a particular primary key have been specified by
the user.

(3) -FKA relationship between an entity and one participating in a
sub/superclass relationship.

Problem description:

Since a subclass superclass relationship between entities is mapped from
relations which have identical primary keys, a relationship between one of
these and another entity (created via FKA) will automatically establish a
relationship between the other entity and all entities which participate in
the subclass superclass relationship with that entity. This can result in the
creation of superfluous as well as even incorrect relationships. This
problem is taken up and solved in the algorithm for the particular case of
relationships created out of SRs (secondary relations). The solution
prescribed is to ask the user to identify the correct entity or entities that
partake(s) in a relationship whenever there are several candidates
(primary relations with identical primary keys).

In the example shown in Figure 4.5 the entity Course should only be
related to the entities Teacher and Student.

18

Person

N

Student Teacher \O\
Course
English Swedish M
Teacher Teacher

Figure 4.5 Establishment of superfluous relationships.

Proposed solution:

This can be resolved by asking the user to specify which of the super and
subclass entities are related to the other entity through an FKA attribute.
The questions will be almost identical to the ones asked in step2
whenever there exist SRs that have attributes in their primary keys which
match the primary keys of several PRs.

Figure 4.6 below shows the correct conceptual schema.

Person

N

Teacher

Student

Course

English
Teacher

Swedish
Teacher

Figure 4.6 The correct schema without superfluous relationships.

19

(4) - Creation of several new entities from one primary relation.

Problem description:
Sometimes, a primary relation (PR1 or PR2) should give rise to two or
more entities. Navathe's algorithm cannot handle such cases.

Example of such a case:

COUNTRY(Name ,ComremEs).
IHFLHTIDH_RHTE(Eum;u_._Y_e_aLBate).

This should produce the model shown in Figure 4.7 below:

Infl.

Country —<>— C - /\Rate Year

Figure 4.7 Creation of the extra entity Currency.

Instead MAKEMODEL produces:

Country "\ Rate Year

Figure 4.8 Faulty model without the entity Currency.

Proposed solution:

An enhancement to the algorithm, in order to handle such cases, could be
made in the following way. For each attribute in all candidate keys of a
relation, ask the user if the attribute should be mapped to an entity. If the
user answers yes, create a relation out of the attribute, and let its primary
key be composed of one attribute whose name is the same as the name of
this new relation. Take the attribute out of the candidate key of the first
relation and add it to the none key attributes of the same relation. This
should be carried out before any candidate key substitutions are made.

(5) - Candidate key substitutions to create sub/superclass relationships.

Problem description:

The candidate key substitution, carried out in stepl.actionl, which
prepares relations for becoming entities that are to be subclasses of other
entities, cannot handle the situation in which there is more than one
superclass to a subclass. When a relation X has several candidate keys
which match the primary keys of several other relations, say Y and Z, and
there is a subclass/superclass relationship between the relations X and Y as
well as between X and Z, the algorithm is unable to establish both of these
connections.

20

Example:

PIANO(P* F& .18).
INSTRUMENT([#. Weight).
FURNITURE(F* Length).

After establishing a sub/super class relationship from FIANOD to
INSTRUMENT, the candidate key 1€ becomes the primary key of PIAND and

P#¥ becomes a candidate key. At this point there is no longer a possibility
of establishing a connection between piano and furniture.

Proposed solution:

Instead of replacing the primary key of a subclass relation with one of its
candidate keys (the one which matches the primary key of one of the
relations which has a superclass relationship to this relation), the primary
key of the superclass could, in some way, be included in the primary key of
the subclass. The matching candidate key could then be deleted from the
relation which is to become the subclass entity.

After the proposed candidate key substitution, the PIRNO relation from the
example above would be PIANO(P# J# F¥).

After the proposed
candidate key
Instrument Fumiture substitution, the piano
relation from the

' examnble above would
be: PIANO(P# I#¥ F#).
The correct model

. that would result is
Biang shown in Figure 4.9
to the left.

Figure 4.9 An entity with two superclasses.

The following is an example involving two levels of sub/superclass
relationships.

PERSON(SS_num)
TERCHER(Teacher_num S8 _nwm)
PHIL _TEACHER(P_num.T eech@r10m)

21

After the proposed candidate

Person key substitution, the relations
from the example above would
look like this:

WY PERSON(SS_num)
Teacher TEACHER(Teacher_num.SS_num)
PHILOSOPHY_TEACHER(P_num Teacher num)

Phil
Tégi?-g:y The resulting conceptual schema

is shown in Figure 4.10 to the left.

Figure 4.10 Two levels of sub/superclasses.

(6) - Relationship from and to the same entity.

Problem description:

The algorithm is not equipped to express the situation where an entity has
a relationship to itself. An example of this is a relationship distance which
connects two cities together. This should produce the conceptual model
shown in Figure 4.11.

Distance

In the example taken up in
this section the relationship
distance connects two cities
together. The figure to the

left illlustrates the correct
representation of this situation.

City

Figure 4.11 Relationship between one entity.

Proposed solution:

One solution to this problem is to supply the algorithm with two relations
on input, one, the relation representing the entity, the other a relation
whose primary key contains the primary key of the first relation two times.
For the example above the relations supplied would be: city(city),
distance(city,city). A relationship (distance) would then be created
between two entities (city and city), but since only one such entity exists,

22

the relationship actually connects the entity (city) with itself. This is an
unnatural way of solving the problem.

Another way to represent this scenario is to have a relationship
connecting two entities that have a subclass relationship to an entity.
Unfortunately, the relation which is to become the relationship between
these two entities will still have to contain two identical attributes in its
primary key. The reason for this is that relations that get mapped to
subclass entities have the same primary keys as the relation which is to
become their superclass entity. Fig. 4.12 shows the resulting conceptual
model.

City

Distance
From Tq
City City

Figure 4.12 Relationship berween two subclasses of the same entiry.

(7) - _Representation of inheritance of attributes by weak entities.

Problem description:

Since a weak entity is ID dependent on another entity, it should inherit
the attributes of the entity on which it is ID dependent. This seems to
have been overlooked in the algorithm.

Hotel_Name which is the

Hotel Name identifying attribute of
Hotel City the entity Hotel, is
inherited by the weak
entity Rum.

This inheritence is implicitly
contained in the conceptual
representaion of the ID
dependence relationship

(Hotel Name) produced by MAKEMODEL
Rum Rum Number and should not be explicitely
B represented as the identifier

of the weak entity Rum.

Figure 4.13 Anribute inheritance.

Proposed solution:
In a similar fashion as inherited attributes become deleted from entities
that have subclass relationships to other entities, inherited attributes of

weak entities should also be deleted.

23

(8) - Establishment of faulty connections between relations.

Problem description:
The candidate key substitution, carried out in stepl.action2, which
establishes a connection between a relation whose candidate key is
included in the primary key of another relation with that relation, can
create faulty relationships between entities by establishing unnecessary

connections between relations.
The following example illustrates such a case:

CITY (Cityname).

CITYPOPULATION(Cityname.Year),
COUNTRY(Countryname, Citgmemsa).

After candidate key substitutions have been made, the relation
citypopulation is altered to be CITYPOPULATION(Countryname.Year).

Year

City

Country

Population

£
N

City

After the candidate key
substitution shown above has
been carried out, a connection
between the relation country
and the relation citypopulation
is established. Citypopulation
becomes an SR2 relation giving
rise to a relationship between
the entity country (created from
the relation country) and year (an
entity created out of the attribute
year in citypopulation). The
entities city and country become
linked through the FKA cityname
in the relation country.

This results in the faulty model
shown in Figure 4.14 to the left.

Figure 4.14 Faulty schema due to candidate key substitutions.

Without the faulty candidate key substitution a different conceptual model
would be produced as shown below.

If the attribute cityname in
country had been a none key
Year attribute instead of a candidate
key, a connection between
country and citypopulation would
never have been established. The
existing connection between
city and citypopulation would
) have been exploited, giving rise

<> City to the relationship citypopulation

Population connecting the entity city with
the entity year. City and country

would still have been related
through the FKA cityname.

City Country This would have resulted in the
correct model shown in Figure

4.15 to the left.

Figure 4.15 The correct schema.

Proposed solution:

A more discriminate use of the candidate key substitution carried out in
stepl.actionl would eliminate some of the unnecessary connections which
may be created between relations. Before replacing an attribute in the
primary key of a relation by a primary key of another relation, the primary
keys of the remaining relations in the database should be examined. If a
primary key of one of these is found to match the attribute which is under
consideration for replacement, it is an indication that there already exists
a connection between the relation for which there is an attempt to define

a connection and another relation and the replacement should thus not be
carried out.

(9) - Incapability of connection an FKA to an SR relationship.

Problem description:

An FKA relationship cannot be established from an entity to a relationship
created out of an SR2 relation. The reason for this is that since an FKA
relationship is established by finding a primary key of a relation which
matches a none key attribute of another relation, the primary key can only
contain one attribute. This rules out SR relations.

Proposed solution:

For each KAG attribute in an SR2 relation (that is to say, attributes, found
in the primary key of relationships, which do not constitute the primary
keys of PRI relations), a database search can be conducted to look for PRI
relations whose NKAs contain these KAGs. This establishes a type of an
FKA connection between an SR2 and a PRI relation. These FKA

2>

relationships would, thus, serve to identify the entity to which the KAG
attribute refers and to connect that entity to the appropriate relationship.

Figure 4.16 illustrates an example of this situation as handled by the
proposed solution described above. In this example the entity child had an
FKA connection to the relationship marriage. This can be seen in the
database relations shown below.

MARRIAGE(Wife_ID.Husband_ID.Family_ID)
WIFE(Wife_ID)
HUSBAND(Husband_ID)
CHILD(;hm_m,Familg_id)
Wife /\ Husband
Marriage
Child

Figure 4.16 Connecting Child to Marriage via an FKA.

(10) - Inappropriate entity names created from attributes.

Problem description:
Entities created from the unaccounted for (KAG) attributes in the primary
key of an SR2 relation can get names which are unsuitable for an entity.

example:
The following database:

SUHGEUH(SS_mLm].
WORKS_IN(SS_num.Hosp_name).

Would give rise to the schema shown in Figure 4.17.

Works
VAL Hosp.
Surgeon \/ TS

Figure 4.17 Inappropriate entity name "Hosp name".

26

Proposed solution:

Consult the user. Whenever a new entity is to be created from an attribute
found in the key of an SR2 relation, ask the user to specify the name the
new entity.

4.6 CONCLUDING EVALUATION

There appear to exist several serious flaws in the method presented by
Navathe and Awong. Many, are fundamental errors which seem to have
been overlooked while constructing the method.

Most of these problems can be solved with varying degrees of
difficulty. To solve the problem of having to have identical names for
identical attributes, a radical change must be made to the algorithm.
Solutions for each of the other ten problems outlined in the previous
section have been recommended and many of these have been
implemented in a revised version of the program entitled 'FIXED
MAKEMODEL'. The fact that the problems can be solved, does not,
however, trivialize their severity.

Most of the recommended solutions require a considerable amount of
user interaction. The result is that, to a large degree, it is the user who
ends up solving the problem. Such a solution is in direct opposition to the
nature and purpose of the method in question, namely that of mapping a
database to a semantic model by the most automated means possible,
which is to say, by keeping the amount of user interaction to a minimal
level.

Constructing a semantic data model from an ordinary database, often
requires the presence of a certain amount of semantic information which
is not, ordinarily, contained in the database. An algorithm which is to
carry out this mapping process must obtain this information in some way.
The information can either be supplied by a user or derived by other
means. Generally, some combination of both, user input and mechanical
generation, is used. The ratio of these two means, called for by the
method, determines, to a large part, the quality of the system produced.
This ratio is (as argued above) unsatisfactory in the method under
examination.

=i

5

AN ALGORITHM BASED ON INCLUSION DEPENDENCY

5.1 INTRODUCTION

The method presented here, and originally described in
[Johannesson89]4. makes use of inclusion dependencies to obtain the
information necessary to map relations in a relational database to a
conceptual model. Inclusion dependencies express connections between
the relations in a database. These connections are, then, used by the
mapping process to give rise to various types of relationships between
entities in a conceptual model.

The data initially available to the mapping process consists of the
relations of a database as well as of a number of statements representing
inclusion dependencies. An inclusion dependency is made up of two
parts, each of which contains a reference to a relation as well as to a key or
non key of the relation.

5.2 A TRANSFORMATION STRATEGY IN FOUR STEPS

The algorithm using inclusion dependencies to map a relational database
to an ER schema has been implemented in MAKEMODELZ2, a program
written in Prolog. Input to the program is a relational schema as well as a
set of inclusion dependencies. Inclusion dependencies are given in the
following way: A.a << B.b, where A and B are relations, a is an attribute or a
list of attributes of A and b is an attribute or a list of attributes of B. This
inclusion dependency states that the set of values appearing in A.a must be
a subset of the set of values appearing in B.b. The relations of the schema
are always in the third normal form represented as Prolog facts. These
facts are, then, processed by a four step procedure which creates an
extended Entity-Relationship semantic data model.

A detailed account of the four step procedure used by MAKEMODEL2
is given below:

STEP1 - The relations of the database schema are classified into three

types: primary, secondary and ternary relations.

PR A primary relation is a relation with the property that no true subset of
its primary key occurs on the left hand side of an inclusion
dependency. The entire key may, however, occur on the left hand
side of an inclusion dependency. (Will map to an entity).

SR A secondary relation is a relation whose primary key is equal to the
concatenation of the left hand sides of at least two inclusion
dependencies. (Will map to a relationship).

TR A ternary relation is a relation such that some attribute of its primary
key occurs on the left hand side of an inclusion dependency and some
other attribute of the primary key does not occur on the left hand side
of any inclusion dependency. (Can map to an entity or a relationship).

4This chapter is an updated version of this paper.

28

Example 1.1:
PERSON(SS¥, Address)
EMPLOYEE(Emp*, Salary)
DEPARTMENT(Dept#, Floor)
WORKS_FOR(Emp* . Dept¥, Start_date)
EMPLOYEE.Emp#® << PERS0N.55%
WORKS_FOR.Emp*® << EIMPLOYEE.Emp¥#
WORKS_FOR.Dept# << DEPARTIMENT.Dept#

In the above example PERSOIl, EIMPLOYEE and DEPARTIMENT are primary
relations, while WORKS_FOR is a secondary relation.

Example 1.2:
HOTEL(Hotel#, Address)

ROOM(Hotel®, Room*)
ROOIN .Hotel# << HOTEL.Hotel®

In the above example HOTEL is a primary relation and ROOMM is a ternary
relation.

Example 1.3:
COUNTRY(Name. Population)
MEMBERSHIP(ization)
IMEMBERSHIP.Country << COUNTRY.Name

In the above example COUNTRY is a primary relation and MEMBERSHIP is a
ternary relation.

STEP2 - Entities and relationships corresponding to the relations of the
database are created.

Every primary relation will give rise to an entity. A secondary relation
can give rise to a relationship. A ternary relation can give rise either to an
entity or a relationship. The user is asked which modelling construct he
prefers. Example 1.2 shows a case where a TR relationship gives rise to
an entity, whereas in example 1.3 it gives rise to a relationship. All binary
relationships introduced in this step will be of type N-N. Those
relationships other than binary are not type identified.

STEP3 - All inclusion dependencies are treated in this step. An inclusion
dependency of a relational database schema can influence the
corresponding conceptual schema in essentially four different ways.

The first possibility is that of a subtype relation between two entities.
The second possibility is that the inclusion dependency indicates a
relationship between entities. In the third case the inclusion dependency
gives rise to a new entity and a subtype relation. In the fourth case a new
entity is to be introduced and there is to be a relationship involving this
entity. A close interaction between keys and inclusion dependencies will
determine which modelling constructs will be used in the conceptual
schema to represent an inclusion dependency.

29

Case 1: Introduction of a subtype relation.

Let I = A.a << Bb be an inclusion dependency. If A corresponds to an
entity, A.a is a key, B corresponds to an entity and B.b is a key then it is
possible that there is to be a subtype relation from the entity
corresponding to A to the entity corresponding to B. The attributes of B.b
will give rise to identifying attributes of the entity corresponding to B.

Example 3.1:
PERSON(SS#, Address)

EMPLOYEE(S5#, Salary)
EMPLOYEE.SS# << PERSON.SS#

In this example the inclusion dependency will give rise to a subtype
relation from EMPLOYEE to PERSONl. The attribute S5# in PERSON will
become the identifier of the entity Person (not shown on the graphic
representation of the conceptual schema).

Person

NV

Employee

Figure 5.1 Result of EMPLOYEE .SS# << PERSON.SS#.

Example 3.2:
PERSON(SS¥*, Dame, Address)

EMPLOYEE(lame, Salary)
EMMPLOYEE.Nlame << PERSON.Name

In this example the inclusion dependency will give rise to a subtype
relation from Employee to Person.

Case 2: Introduction of relationships between existing entities. This case
can be divided into the following two sub cases:

Case 2a: Let I = A.a <« B.b be an inclusion dependency. If A corresponds to
a relationship, A.a is a non key contained in the primary key of A, B
corresponds to an entity and B.b is a key then it is possible that the entity
corresponding to B is an entity participating in the relationship
corresponding to A. The attributes B.b will become identifying attributes
of the entity corresponding to B.

Example 3.3:
EMPLOYEE(Emp¥#, Salary)

WORKS_IN(Emp*. Dept#)
WORKS_IN.Emp* << EMPLOYEE.Emp#

30

In this example the entity Employee will become an entity participating in
the relationship.

Works

Employee in

Figure 5.2 Result of WORKS IN.Emp# << EMPLOYEE Emp#.

Case 2b: Let I = A.a << B.b be an inclusion dependency. If A corresponds to
an entity, A.a is a candidate key or a non key, B corresponds to an entity
and B.b is a key then it is possible that there is to be a relationship
between the entities corresponding to A and B. The type of the
relationship is 1-1 if A.a is a key and otherwise 1-N. The attributes of B.b
will become identifying attributes of the entity corresponding to B.

Example 3.4:
DEPARTIMENT(Dept#, Floor)
EMPLOYEE(Emp* , Dept#, Salary)
- EMMPLOYEE.Dept # <« DEPARTINENT .Dept#

In this example, a relationship (which may be called Works_in) between
Employee and Department is introduced.

Works
in

1
Employee <> Department

Figure 5.3 Result of EMPLOYEE Dept # << DEPARTMENT Dept#.

Example 3.5:
CAPITAL(DName)

COUNTRY(Country_name, Cepftal)
COUNTRY.CAPITAL <« CAPITAL.NAME

al

In this example a relationship (which may be called Has) is introduced
between the entities Capital and Country.

Has
1 1
Country J<> Capital

Figure 54 Result of COUNTRY.CAPITAL << CAPITALNAME.

Case 3: Introduction of a new entity and a subtype relation. This case can
be divided into the following two sub cases:

Case 3a: Let I = R.a << Bb be an inclusion dependency. If A corresponds to
an entity, A.a is a key, B corresponds to an entity and B.b is a candidate key
or a non key then it is possible that the following are to be introduced: a
new entity corresponding to B.b, a subtype relation from the entity
corresponding to A to this new entity and a relationship between the new
entity and the entity corresponding to B. The type of the relationship is
1-1 if B.b is a key and 1-N otherwise. The attributes B.b will become
identifying attributes of the new entity.

Example 3.6:

COUNTRY(Name, Capital)
LARGE_CAPITAL(Name, Population)
LARGE_CAPITAL Name << COUNTRY.Capital

In this example a new entity Capital is introduced corresponding to

COUNTRY.Capital, a subtype relation from Large_capital to Capital and a
relationship between Country and Capital.

1 1
Country Q Capital
U
Large_cap

Figure 55 Result of LARGE_CAPITAL Name << COUNTRY Capital.

Case 3b: Let I = R.a << Bb be an inclusion dependency. If A corresponds to
an entity, A.a is a key, B corresponds to a relationship and B.b is a non key
contained in the primary key of B then it is possible that the following are
to be introduced: a new entity corresponding to B.b and a subtype relation
from the entity corresponding to A to this new entity. The new entity will
be an entity participating in the relationship corresponding to B. The
attributes B.b will become identifying attributes of the new entity.

32

Example 3.7:
DEPARTMENT_PROJECT(Dept¥. Proj*, Budget)

HIGH_RISK_PROJECT(Proj®, Max_cost)
HIGH_RISK_PROJECT.Proj¥ << DEPARTIMENT_PROJECT .Proj¥

In this example the following are introduced: a new entity corresponding
to DEPARTINENT_PROJECT.Proj* and a subtype relation from
High risk_project to Project. Project will be an entity participating in
Department_project.

O Project

Dep.
Proj. W

H. R. Proj

Figure 5.6 Result of HIGH RISK PROJECT Proj# << DEPARTMENT _PRO]E CT.Proj#.

Case 4: Introduction of a new entity and its connections to existing
entities and relationships. This case can be divided into the four
subcases:

Case 4a: Let I = R.a << Bb be an inclusion dependency. If A corresponds to
a relationship, A.a is a non key contained in the primary key of A, B
corresponds to an entity and B.b is a candidate key or a non key then it is
possible that there is to be a new entity corresponding to B.b. The new
entity will be an entity participating in the relationship corresponding to A
and there will be a relationship between the new entity and the entity
corresponding to B. The type of the latter relationship is 1-1 if B.b is a key
and 1-N otherwise. The attributes B.b will give rise to identifying
attributes of the new entity.

Example 3.8:
CAPITAL(Nlame, Goumisy)
MEMBERSHIP(

. .)
IMEMBERSHIP.Country << CAPITAL.Country

In this example a new entity Country is introduced, which will become an
entity participating in Membership. There will also be a relationship
between Country and Capital.

Membership

1 1
Capital ——<>—— Country _<>

Figure 5.7 Result of MEMBERSHIP .Country << CAPITAL.Country.

33

Case 4b: Let I = A.a << B.b be an inclusion dependency. If A corresponds to
an entity, A.a is a candidate key or a non key, B corresponds to an entity
and B.b is a candidate key or a non key then it is possible that there is to
be a new entity corresponding to B.b, a relationship between the entity
corresponding to A and the new entity and a relationship between the
entity corresponding to B and the new entity. The type of the first
relationship is 1-1 if A.a is a key and otherwise 1-N. The type of the
second relationship is 1-1 if B.b is a key, otherwise 1-N. The attributes B.b
will become identifying attributes of the new entity.

Example 3.9:

COUNTRY(Name, Crereney)

INFLRATE(Currency. Year, Rate)
INFLRATE Currency << COUNITRY.Currency

In this example the following are introduced: a new entity Currency

corresponding to COUNTRY.Currency, a relationship between Country and
Currency and a relationship between Inflrate and Currency. Currency will
get the identifying attribute name.

1 1 1 N
Country + Currency <>_ Infl. Rate

Figure 5.8 Result of INFLRATE .Currency << COUNTRY .Currency.

Case 4c: Let I = R.a <« B.b be an inclusion dependency. If A corresponds to
an entity, A.a is a candidate key or a non key, B corresponds to a
relationship and B.b is a non key contained in the primary key of B then it
is possible that there is to be a new entity corresponding to B.b and a
relationship between the entity corresponding to A and the new entity.
The new entity will be an entity participating in the relationship
corresponding to B. The type of the new relationship is 1-1 if A.a is a key
and otherwise 1-N. The attributes B.b will become identifying attributes of
the new entity.

Example 3.10:
DEPARTINENT_PROJECT(Dept#. Proj*, Budget)
EQUIPMENT(E#, Proj¥)
DEPARTMENT(Dept#)
EQUIPMENT.Proj¥ << DEPARTMENT_PROJECT .Proj¥

In this example a new entity Project, corresponding to
DEPARTMENT_PROJECT.Proj¥ and a new relationship (which may be called
Belongs_to) between Equipment and Project are introduced. Project will
be an entity participating in Department_project (see Figure 5.9).

34

Dept. Belongs
Project to

1 N
Department -\ Project _O— Equipment
")

Figure 5.9 Result of EQUIPMENT.Proj# << DEPARTMENT " PROJECT .Proj#.

Case 4d: Let I = A.a << Bb be an inclusion dependency. If A corresponds to
a relationship, A.a is a non key contained in the primary key of A, B
corresponds to a relationship and B.b is a non key contained in the
primary key of B then it is possible that there is to be a new entity
corresponding to B.b. The new entity will be an entity participating in both
the relationship corresponding to A and the relationship corresponding to
B. The attributes B.b will become identifying attributes of the new entity.

Example 3.11:
DEPRRTMENT_PROJECT(Dept ¥, Proj*, Budget)

EIMPLOYEE_PROJECT(Emp*. Proj¥, Hours)

DEPARTIMENT(Dept#)

EMPLOYEE(Emp#)

EmPLUYEE_PHUJECT.Proj# << DEPRRTMENT_PROJECT .Proj®

In this example a new entity Project, corresponding to
DEPARTMENT_PROJECT.Proj# is introduced. Project will be an entity
participating in both Department_project and Employee_project.

Dept. Emp.
Project Project

Department,_<>__ Proiect N Employee
J \ i

Figure 5.10 Result of EMPLOYEE PROJECT Proj# << DEPARTMENT _PROJECT Proj#.

STEP4 - Attributes which do not occur in some inclusion dependency
are handled here. This will be done in two substeps:

a) If R is a ternary relation corresponding to a relationship and KijieJi, are

attributes contained in the primary key of R, which have not been handled
in step 3 then these attributes will give rise to one or more new entities,
which will become entities participating in the relationship corresponding
to R.

Example 4.1:
COUNTRY(Ilame, Capital)
MEMBERSHIP(ization)
[NEMBERSHIP.Country << COUNTRY.Name

33

After step 3 the schema in figure 5.11 is obtained and after step 4a the
schema of figure 5.12.

b) If a is an attribute of a relation R and a has not been handled in step 3 or
4a then a will give rise to an attribute of the entity or relationship
corresponding to R. Continuing the example in step 4a above the attribute

COUNTRY.Capital will give rise to an attribute capital of the entity Country,
see fig. 5.13.

name
Country }— pame Country — pname Country
capital
é Membership Membership Membership
Organizat. Organizat.
Figure 5.11 After step 3. Figure 5.12 After step 4a. Figure 5.13 After step 4b.

5.3 SUBSUMPTION OF INCLUSION DEPENDENCIES

Under certain circumstances an inclusion dependency will not give rise to
any additions to a conceptual schema. The reason for this is that an

inclusion dependency may be "subsumed" (i.e. made redundant) by other
inclusion dependencies.

An inclusion dependency I = R.a << C.c is said to be subsumed by two
other inclusion dependencies J and K if either (a) or (b) below holds.

(@) J=Bb<«C.c and
K = H.a << B.b hold and
B.b and C.c are keys

(b) J=C.c<«Dd and
K = H.a <« D.d hold and
C.cis anon key and D.d is a key

36

An illustration of (a) above is the following:

Person |_
PERSON(SS*, Address) N
EMPLOYEE(SS¥, Salary) W =
SECRETARY(SS¥, Computer®) i
EMPLOYEE.SS¥ < PERSON.S5% Empiaysed |
SECRETARY.SS* << EMPLOYEE.S5* U,
SECRETRRY.SS* < PERSON.SS5# 7
Secretary

Figure 5.14 Superfluous link.

In this example the last inclusion dependency is subsumed by the previous
two. Had the last inclusion dependency been treated, case 1 would have
applied giving rise to a subtype from Secretary to Person. However, this
subtype relation is superfluous since there wiil be subtype relations from
Secretary to Employee and from Employee to Person. The last inclusion
dependency in the example above can, therefore, be disregarded when
building the conceptual schema.

Example: An example of (b) above is the following:

COUNTRY(Name, Capital)

MEMBERSHIP(Countru. Organization)

POPULATION(Country, Year, Population)
IMEIMBERSHIP .Country << COUNTRY.Name

POPULATION.Country << COUNTRY.Name
IMEMBERSHIP.Country << POPULATION.Country

In this example the last inclusion dependency is subsumed by the two
previous. Had this inclusion dependency been handled, case 4a would
have been applicable and a new entity corresponding to
POPULATION.Country would have been introduced. Such an entity is,
however, superfluous since an entity Country corresponding to the relation
COUNTRY already exists. The connection between this entity and the
relationship Membership is given by the first inclusion dependency above.

Consequently, we can disregard the last inclusion dependency. Figure
5.15 illustrates this situation.

5

Country i OH>— Organization
Membership

<

[“--‘-----l
Population ----{/'---\' Country

Figure 5.15 Superfluous entity.

5.4 HANDLING AMBIGUOUS CASES

Every inclusion dependency which is not subsumed by other inclusion
dependencies is to be handled by one of the four cases above. This will
result in additions to the preliminary conceptual schema produced by step
2 of the method. Sometimes a situation in which more than one case may
be a candidate for handling an inclusion dependency may arise. To solve
this problem the user is asked to choose the appropriate case. The table
depicted in fig. 5.16 shows all of the various types of inclusion
dependencies that may occur and the cases which can be used for
handling these. As an example, illustrating how to interpret the table, the
second row of the table is to be read as "if I is an inclusion dependency
whose left hand side is a primary key and whose right hand side is a
candidate key then I can be handled by either case 1 or case 3". Examples
3.2 and 3.6 above show that there are two alternative ways of handling an
inclusion dependency of that type.

Type of Inclusion Dependency Possible Cases

Primary Key << Primary Key 1
Primary Key << Candidate Key 1,3
Primary Key << Non Key 3

Candidate Key << Primary Key 1
Candidate Key << Candidate Key 1
Candidate Key << Non Key 3

Non Key << Primary Key 2
Non Key << Candidate Key 2,4
Non Key << Non Key 4

Figure 5.16 Table showing interaction between keys,
inclusion dependencies and modelling constructs.

Inspection of the above table leads to the observation that only those
inclusion dependencies involving candidate keys have more than one
possible way of being handled. The reason for the complication caused by
candidate keys is that a candidate key may indicate the presence of a

38

corresponding entity. An example illustrating this is the relation

COUNTRY(Name, Capital), where the candidate key Capital may give rise to
an entity of its own, i.e. something about which we want to collect
information. In other cases a candidate key does not give rise to an entity.

An example is the relation EMPLOYEE(Emp#,55%,5alary), where the
candidate key 55# is only an alternative identifier of the entity Employee.
5.5 AN EXAMPLE

Relational database schema given as input:

COUNTRY(Name Cepital.Curreney) (primary)
CURRENCYVALUE(Currency, Value_in_$) (primary)
CITYPOPULATION(City. Year, Population) (primary)
MEMBERSHIP(Country, Organization, Entry_date) (ternary)
EXPORT(Supplier. Consumer, Amount) (secondary)
COMPANY(Name, Country, Revenues) (primary)
EUROPEAN(Country, Population) (primary)
CURRENCYVALUE.Currency << COUNTRY .Currency (3a)
COUNTRY.Capital << CITYPOPULARTION.City (4b)
INMEMBERSHIP.Country <« COUNTRY.Name (2a)
EXPORT.Supplier << COUNTRY.Name (2a)
EXPORT.Consumer << COUNTRY.Name (2a)
COMPANY.Country << COUNTRY.Name (2b)
EUROPERI.Country << COUNTRY.Name (1)

To the right of each relation its classification is given. The number to the
right of each inclusion dependency indicates by which case of step 3 it is
to be handled. The following figures show the intermediate schemas and
the final schema.

Country City_pop <> Export
Currency |

with value Member
European Company ship

Figure 5.17 The schema after step 2.

N Member
Export ship
N

Country

Member[(U
ship

European

City_pop
Currency
with value
’ M\
N Company

Figure 5.18 The schema after having handled inclusion dependencies of type 1 and 2.

Ciiy _pop

Export

N Capital
N

1 1 Currency
/j/ W

Member | Country
ship 7
NV

Eurcpean

Currency

\1\ with value
1

N Company

Figure 5.19 The schema after step 3.

City_pop

t

Expor .
N Capital
N

4 1 Currency
/3/ U

ship
LN
N
European

Currency

\K with value
1

N Company

Organization|

Figure 520 The final schema.

39

40

5.6 CONCLUDING EVALUATION

The accessibility of the information supplied by inclusion dependencies to
the algorithm simplifies the mapping problem considerably. This
simplification can, however, be viewed both as a strength and a weakness
of the method.

On the one hand, it causes the problem of creating entities and
relations between them to be a trivial one since a great majority of the
information used to create relationships between entities is contained in
the given inclusion dependencies. The relationship between input to and
output from the algorithm almost has a one to one correspondence. This
renders the translation process easy, clean and accurate.

The disadvantage of providing inclusion dependencies is that a large
part of the solution is supplied to the algorithm. Arriving at a conceptual
model from something which is almost a conceptual model is not all that
remarkable.

A way to alleviate this problem is to generate these dependencies.
Suggestions for all potential inclusion dependencies of a database can be
generated mechanically by searching through the extension (the tuples) of
the database. Mechanizing the generation of inclusion dependencies
allows for less user interaction while maintaining the high degree of
lucidity and accuracy of the mapping algorithm.

41

6

A COMBINED APPROACH

6.1 INTRODUCTION

A combined method using inclusion dependencies as well as similarity in
attribute names to obtain the information necessary to map relations in a
relational database to a conceptual model is presented here. In contrast to
the two previously described methods, neither inclusion dependencies nor
identical attribute names are required to be included in the relational
database in order for the algorithm to establish connections between two
or more relations in the database. Instead, potential inclusion
dependencies, based on identical or similar attribute names, are suggested
for the user. The existence of a proposed inclusion dependency is then
either confirmed or denied by the user. Inclusion dependencies deemed
to hold true for the database in question, are added on to the given
database and used to establish connections between the relations of the
database.

A dictionary of synonyms is used to infer similarity in attribute names.
This dictionary consists of a number of entries. Each entry is made up of a
list of words with similar meanings. Every time a proposed inclusion
dependency is confirmed or a new inclusion dependency is entered, the
dictionary is updated with the new synonyms. This renders the method
dynamic as part of the information it uses, to create the conceptual
schema, is always growing in size.

The data initially available to the mapping process consists of the
relations of a database. The relations of the schema are always in the third
normal form and can be given with or without instances.

6.2 A TRANSFORMATION STRATEGY IN SEVEN STEPS

The proposed algorithm using both inclusion dependencies and attribute
name similarity to map a relational database to an ER schema has been
implemented in MAKEMODEL3, a program written in Prolog. Input to the
program is a relational schema given with or without detail information
(instances) and a dictionary of synonyms. For each relation, a relation
name, key and none key attributes as well as the domain5 of all attributes
are specified. '

The relations are represented as Prolog facts. These facts are, then,
processed by a seven step procedure which creates an extended Entity-
Relationship semantic data model containing subclasses. In stepl,
attributes of different relations, having the same domain, same name or
whose names are synonyms contained in the dictionary, or where the
instances of one attribute make up a subset of the other, are used to
generate potential inclusion dependencies. In step2 candidate keys are
handled and, if needed, relations that are to become new entities are
created as well as new inclusion dependencies used to connect these new

5 A domain is a set of nondecompasable values. It is the smallest unit of data in the
relational model. For example, the domain of shipment quantities is the set of all integers
greater than zero and less than 10,000.

42

relations to existing ones. In step3, the relations of the database are
classified. Entities and relationships are created in step4. In step5,
connections between entities that have a sub/superclass relationship to
each other are established. In step6, all remaining connections are
handled based on the inclusion dependencies. In step7, the mappings of
the functional dependencies between the entities of binary relationships
are set up.

A detailed account of the seven step procedure used by MAKEMODELS is
given below:

STEP1 - potential inclusion dependencies are searched out and suggested
for the user. This is done in two phases. During the first phase all
potential inclusion dependencies, for the given relations, are sought out
based on the type information provided for the database. The second
phase is divided into two cases. The first case is that of a database for
which both type and detail information is given. In this case the inclusion
dependencies are further deduced from the extensions .of the database.
The second case is that where the database is given on a type level only.
Here, a dictionary of synonyms is used to further limit the set of likely
candidates for inclusion dependencies. In both cases, the user is asked to
confirm or deny the suggested inclusion dependencies. In the second case
the user is asked to provide any remaining inclusion dependencies not
suggested by the system. After the two phases have been carried out, the
dictionary of synonyms is updated with any new information.

Phase I - The domains of all attributes of all relations are examined. For
each domain, all attributes, having that domain, of some relation are paired
with an attribute, of the same domain, of another relation. The set of
Relation/Attribute pairs (R1,A1,R2,A2) makes up the set of all possible
inclusion dependencies for the database.

Phase II - The set of potential inclusion dependencies produced in phase I
is further reduced here.

Casel - A complete set of inclusion dependencies is mechanically arrived
at here. Two actions are carried out for this case.

actionl - The extensions of the database are examined with the set of
potential inclusion dependencies. For each Relation/Attribute pair, the
extensions of the two attributes are examined in order to ascertain if one is
a subset of the other. The resulting set is a more limited set of the
original set produced in phase I but is a set which also includes all
potential inclusion dependencies.

action2 - This set is then shown to the user who is, then, asked if the
inclusion dependencies are valid. Each valid inclusion dependency is
added to the database. The attribute pairs contained in the set of inclusion
dependencies, accepted as valid, are gathered to update the synonym
dictionary.

case2 - An incomplete set of inclusion dependencies is arrived at
mechanically which the user must, then, complete. Three actions are
carried out for this case.

43

actionl - The names of the attributes in the potential Relation/Attribute
pairs are checked. If the names of the two attributes contained in the pair
are identical, the pair is placed in a set of likely candidates. When the
names are different, a synonym dictionary is checked. If one of the names
is found to be contained in the dictionary, the pair is included in the
'likely' set.

action2 - This set of likely inclusion dependencies is shown to the user
who is then asked if the inclusion dependencies are valid. Each valid
inclusion dependency is added to the database.

action3 - The user is now asked to provide all the remaining inclusion
dependencies that were missed by the previous action. These are also
added to the database for processing. The attribute pairs contained in the
entered inclusion dependencies are gathered and the synonym dictionary
is updated.

STEP2 - Candidate and none keys are handled and, when appropriate, new
relations and inclusion dependencies are created which, in the future, will
give rise to new entities. Four actions are carried out in this step.

actionl - The candidate keys of each relation in the database are
examined. For each candidate key which is also found to be on the right
hand side of an inclusion dependency, a question is put to the user asking
if the attribute, making up this candidate key, should be made into an
entity. If the user answers 'yes', a relation is created out of the candidate
key. This new relation will get a primary key with the same name as the
relation. The candidate key is deleted from the relation and is added as a
none key to the relation. The original inclusion dependency is deleted and
two new inclusion dependencies are added in order to connect the new
entity with the two entities which will result from the relations

corresponding to the right and left hand sides of the original inclusion
dependency.

Example 2.1:

CINEMA(Name Film)
THRILLER([lame)
THRILLER.Nlame << CINEMA.Film

After actionl the changes would result in the following database:

CINEMA (Name, Film)
THRILLER(Name)
FILM(Film)

THRILLER.Name < FILIN.Film
CINEMA.Film << FILIM.Film

action2 - The candidate keys of each relation in the database are examined.
If a candidate key is found to be on the left side of an inclusion
dependency, and the attribute on the right hand side of the inclusion
dependency is a key, a question is put to the user asking if there prevails a
subclass superclass relationship between the entities corresponding to the
two relations. If the user answers 'yes', the candidate key is changed to
become the primary key of the relation. The two relations are then ready
to be processed as having a sub/superclass relationship to each other. If
the answer is 'no', the user is asked whether there prevails a subclass
supercalss relationship between an entity corresponding to the candidate
key and the entity corresponding to the relation on the right hand side of
the inclusion dependency. If that is the case a new relation is created out
of the candidate key and inclusion dependencies are set up to connect the
new entity with the entities which will result from the relations
corresponding to the right and left hand sides of the inclusion
dependency. If none of these subclass superclass relationships exist, the
inclusion dependency will, later, give arise to an ordinary relationship.

Example 2.2:

PERSON(SS_num)

CUSTOMER(Cust_num, 38 _nmm)
- CUSTOMER.SS_num << PERSON.SS_num

Question asked in action2:
Is CUSTOITNER a subclass of PERSON?

After action2 the changes would result in the following database:

PERSON(SS_num)
CUSTOMER(SS_num,CUST_num)
CUSTOMER.SS_num << PERSON.SS_num

action3 - The primary key of each relation which also is a relation
contained on the right hand side of an inclusion dependency is examined.
If an attribute contained on the right hand side of an inclusion dependency
is a subset of the primary key of the relation contained on the right hand
side of the inclusion dependency, a new entity corresponding to the
attribute on the right hand side of the inclusion dependency, is created.
The original inclusion dependency is deleted and two new inclusion
dependencies are added in order to connect the new entity with the two
entities which will result from the relations corresponding to the right and
left hand sides of the original inclusion dependency.

Example 2.3:

RENT(Store Film)

CUSTOMER(Cust_num, Store)
CUSTOITIER.Store << Rent.Store

45

After action3 the changes would result in the following database:

RENT(Store Film)

CUSTOMER(Cust_num., Store)
STORE(Store)

CUSTOINER.Store << STORE.Store
REINT.Store <<« STORE.Store

action4 - The none key attributes of each relation in the database are
examined. For each such attribute which is also found to be on the right
hand side of an inclusion dependency, a new relation is created. This
new relation will get a primary key with the same name as the relation.
Two inclusion dependencies are added in order to connect the new entity
with the two entities which will result from the relations corresponding to
the right and left hand sides of the inclusion dependency.

STEP3 - The relations of the database schema are classified into four

types: primary (PR), secondary (SR) and two types of ternary (TR1 and
TR2) relations.

PR - Relation with the property that no subset of its primary key
occurs on the left hand side of an inclusion dependency. (The
entire key may, however, occur on the left hand side of an
inclusion dependency.)

SR - Relation whose primary key is equal to the concatenation of
the left hand sides of at least two inclusion dependencies.
TR - Relation such that some attribute of its primary key occurs on

the left hand side of an inclusion dependency and some other
attribute of the primary key does not occur on the left hand
side of an inclusion dependency.

The primary relations will correspond to entities in the conceptual
schema, the secondary to relations and the ternary relations to either
entities or relationships. TR1s will correspond to weak entities. A weak
entity is an entity whose key identifier is ID dependent on another entity's
key identifier. TR2s will give rise to relationships. It is via a user question
that it is determined if the TR relation will be an entity or a relationship.

Example 3.1:

PERSON(Soc_Sec, Name,Address)
SPECTATOR(SS_num, Seat_Num)
WATCH(SS. Movie_Title)
IMOVIE(Title)

SPECTATOR.SS_num << Person.Soc_Sec
WATCH.SS <« SPECTATOR.SS_num
WATCH.Movie_Title << [NOVIE. Title

Person

Spectator Movie

Figure 6.1 Schema created from the relations in example 3.1.

In this example Person, Spectator and [Mlovie are primary relations, while
Watch is a secondary relation.

Example 3.2:

VIDEOSTORE(Store#, Address)
DEPT(Store® Dept# Record MName)
FILM(Film_Title)

LEND(Store® Film_Title.Customer)
DEPT.Store® << VIDEOSTORE.Store®
LEND.Store® << VIDEOSTORE.Store®
LEND.Film_Title << FILIM.Film_Title

Video Fil
Store {m

Dept. Customer

Figure 6.2 Schema created from the relations in example 3 2.

In the above example DEPT and LENID are ternary relations. As shown in

figure 6.2, LENID will become a relationship while DEPT will become a weak
entity.

47

STEP4 - Entities and relationships corresponding to the relations of the
database are created.

Entities are created from PR relations. TRI1 relations map to weak
entities. SR and TR2 relations give rise to relationships. Attributes
contained in the primary key of TR2 relations to which corresponding
entities do not exist are mapped to new entities (the entity customer in
example 3.2 above is an illustration of such a case).

STEPS - All subclass/superclass relationships are handled here.

If the attribute(s) appearing on the left hand side of an inclusion
dependency constitute the primary key of the entity corresponding to the
relation named on the left hand side of the inclusion dependency and the
attribute(s) appearing of the left hand side of the same inclusion
dependency constitute a key of the relation appearing on the right hand
side, a sub/super class relationship is established between the two entities.

Example 5.1:

FILM(Film_Name.Director,Year)
FOREIGN_LANG_FILM(Film_Name Language)
FOREIGII_LANG_FILM. Film_Name << FILM. Film_Name

After all subclass/superclass relationships have been identified and
generated, any indirect links between entities in a chain involving two or

more levels of sub/superclass relationships are deleted. Figure 6.3 below
illustrates such a subsumption.

Film ™.
\\\ The link between
W 2 Foreign Comedy and
\ Film should not be
Foreign ‘: s represented explicitly
Film Y in the conceptual schema.
L}

Y

Foreign e
Comedy |

Figure 6.3 Superfluous indirect link.

48

STEP6 - All inclusion dependencies are handled here to establish
connections between the data structures of the ER schema. When a
relationship is created by other means than by mapping a relation in the
database to a relationship, the relationship will not have a name. In such
cases, the user will be asked to furnish a name for the relationship.

The following connections are identified and set up here:

- Relationships arising from SR and TR2 relations. These relationships
were generated from relations appearing on the left hand sides of
inclusion dependencies. The entities generated from the relations on
the right hand sides of the same inclusion dependencies will become
the entities connected to the relationship.

Example 6.1:
CUST(Cust_num, Name, Addr)
FILM(Name)

RENT(Customer Film_Title)
REINT.Customer << CUST.Cust_num
RENT.Film_Title << FILINl.Name

Customer Rent Film

Figure 6.4 Relationship created from an SR.

- Relationships created from FKA connections between two entities. An
FKA (Foreign Key Attribute) is a none key attribute of a relation which
has been mapped to an entity, such that there is an inclusion
dependency from the key of another relation to the attribute. In this
case the relation on the left hand side of the inclusion dependency
must also be mapped to an entity. The relationship between the two
entities will be an entirely new relationship. The user will be required
to give a name to this relationship.

Example 6.2:

MEMBER(Cust_num,Videostore)
VIDEOSTORE(Qlame)
INEMBER. Videostore << VIDEOSTORE.Nlame

‘ Belongs Video
Member Siars

Figure 6.5 Relationship created from an FKA.

49

- Connections between an entity and a relationship through an FKA. An
inclusion dependency from a none key of a relation corresponding to a
relationship to a key of a relation corresponding to an entity will result
in a connection between the entity and the relationship.

Example 6.3:
RENT(Cust.Film,Store_num)
CUSTOMER(Name)

FILM(Nlame)

VIDEOBOUTIQUE(Store_num)
REINT. Store_num << VIDEOBOUTIQUE. Store_num

Customer @ Film

Video
Boutique

Figure 6.6 An FKA connection between an entity and a relationship.

- Connections between weak entities and the entities on which these are
ID dependent. A weak entity corresponding to a relation found on the
right hand side of an inclusion dependency whose key contains the key
of the relation, corresponding to an entity, on the left hand side of the
inclusion dependency will give rise to a connection between the two
entities.

Example 6.4:
VIDED_COMPANY(Name)
VIDEO_STORE(Company.llame.Store_num)
VIDEO_STORE.Company_Nlame << VIDEO_COMPANY. llame

Video B Video
Company Store

Figure 6.7 The weak entity Video store.

50

STEP7 - Binary relationships are identified and labeled as such. For each
binary relationship, the mapping of the functional dependency between the
two entities for the relationship is established. In the case of relations
produced from FKA connections between two entities, the mappings are
produced automatically. For binary relationships produced from SR and
TR2 relations, the user is asked to specify the correct mapping.

Mappings produced automatically are done in the following way: If the
FKA in the original relation, that is the attribute on the left hand side of
the inclusion dependency, is a none key, the relation gets a mapping of
many to one. If the FKA of the original relation is a candidate key, the
mapping becomes one to one. The motivation for this is that the instances
of none key attributes are not necessarily unique for the relation, whereas
candidate key attributes are unique. Several instances of none key
attributes can, therefore, correspond to one key attribute, but only one key
attribute can correspond to another key attribute of two different relations
on two sides of an inclusion dependency.

Example 7.1:
The relational database consisting of the two relations Sales_person and

Store, complete with instances and supplemented with the inclusion
dependency: SALES_PERSON.Store << STORE.Nlame,

Sales_person |Emp num | Store Store Name
123456 |Video_butique Video_butique
234567 |Video_butique Video_house
345678 |Video_land Video_corner
Video_land
Video_palace

will give rise to the following conceptual schema:

Sales M
Works 1
Person IR Store

Figure 6.8 The mapping created automatically from example 7.1.

For binary relationships produced from SR relations the user must chose
between one of the following four types of mappings:

- one to many (1,M)

- many to one (M,1)

- one to one (1,1)

- many to many (M,M)

L

Example 7.2:

VIDEO_STORE(Nlame)

CASSETTE(Serial_number)
OWNS(Sore.Cassette)

OWINS.Store << VIDED_STORE.Ilame
OWIS.Cassette << CASSETTE.Serial_number

The user is asked to choose one of the above mappings to describe the

functional dependency between the entity Video_store and the entity

Cassette in the relationship Owns. The user chooses, for example, (1,M).
This results in the following mapping:

Video 1 @ M Cassette
Store

Figure 6.9 The mapping given by the user from example 7.2.

6.3 AN EXAMPLE

Relational database schema given as input:

VIDEO_STORE(Store_llum.Addr,Company_Name)
VIDEU_EDmPﬂnY(ﬂam_E,Yearlg_Profitsg
DEPARTMENT(Dept_Name.Store._Num Product)
FILIM(Title Director,Year)
BUY(Video_Company.Wholesale_Company)
EMPLOYEE(Emp_Num .Name)
WORKS_IN(Emp_Mum.Store_Num)

CUSTOMER (Cust_Num,Address,Nlame)
RENT(Cust_Num.Film_Title Store_Nlum)
CD_BEEUHD(H_&M]

SELLS(Cust.Record.Store)

MEMBER(Cust_Num Bonus_Points)
MUSICAL(Film_Ser_Num Film Title)
COMEDY(Film_Ser_Num Film_Tile)
THRILLER(Film_Ser_Num Film _Tia)
REQUEST(Frum._Store.To Store)

During stepl, inclusion dependencies for the database, shown above, are
suggested and/or requested from the user. It is assumed that attributes
can have one of two domains: integer, string. It is also assumed that the
synonym dictionary contains the following entries:

e company, company_name, name
e from_store, store_num, store_number, to_store
e cust,cust_num

32

e film, film_name, film_title, movie_title, title
* store, store_num

MAKEMODELS3 will then give the following correct suggestions (among
other incorrect ones) for the domain integer based on either identical or
synonymous names of attributes.

[MEMBER.Cust_Num >> CUSTOMER.Cust_Ilum

RENT .Cust_Mlum >> CUSTOMER.Cust_Num

SELLS.Cust << CUSTOINIER.Cust_lum
DEPARTIMENT.Store_Num << VIDEO_STORE .Store_Ilum
WORKS_IN.Emp_Num << EMPLOYEE.Emp_llum

REINT .Store_Ilum << VIDEO_STORE .Store_lNum
REQUEST .From_Store << VIDEDO_STORE.Store_Ium
REQUEST.To_Store << VIDEO_STORE.Store_llum
SELLS.Store << VIDEO_STORE .Store_Nlum
WORKS_II.Store_Num << VIDED_STORE.Store_Num

It will then suggest the following inclusion dependencies for the string
domain.

COMEDY .Film_Title << FILIM.Title

IMUSICAL.Film_Title << FILIM.Title

REINT Film_Title << FILIM.Title

THRILLER.Film_Title << FILIN.Title
VIDEO_STORE.Company_Ilame << VIDEO_COIMPANY.Name

The following inclusion dependencies are then provided by the user.

BUY_FROII.Video_company > VIDEO_COIMMPANY.Name
SELLS.Record >>CD_RECORD.Nlame

In step2 the candidate keys are handled for the three relations in the
database that have candidate keys. The following questions are asked.

Is COMMEDY a subclass of FILIN ?
yes

Is MUSICAL a subclass of FILIT 7
yes

Is THRILLER a subclass of FILITl ?
yes

After this the candidate keys are made into primary keys for these three
relations.

All relations are classified in step83. The user is requested to specify
whether the TR relations should be entities or relationships.

53

DEPARTIENT could be either an entity or a relationship,
Please specify which it should be by typingan e or an .

e

BUY could be either an entity or a relationship,

Please specify which it should be by typinganecoranr.

r

The relations are classified in the following way:

rel('VIDED_COMPANY' pr).
rel('VIDED_STORE' pr).
rel('DEPARTIMENT tri).
rel('FILIN' pr).

rel('BUY" tr2).
rel('"EMPLOYEE' pr).
rel("WORKS_IN' sr).
rel('CUSTOMER' pr).
rel('RENT" sr).
rel('CD_RECORD' pr).
rel('SELLS' sr).
rel('MEMBER’ pr).
rel('MUSICAL' pr).
rel('COMEDY" pr).
rel('THRILLER' pr).
rel('REQUEST',sr).

Entities, weak entities and relationships are created in step4.

[CD_RECORD] Entity Identifier: [Name]

[COMEDY] Entity Identifier: [Film_Ser_Num]

[CUSTOMER] Entity Identifier: [Cust_TNum]

[EMPLOYEE] Entity Identifier: [Emp_Num]

[FILM] Entity Identifier: [Title]

[MEMBER] Entity Identifier: [Cust_Num]

[MUSICAL] Entity Identifier: [Film_Ser_Num]

[THRILLER] Entity Identifier: [Film_Ser_Num]
[VIDEO_COMPANY] Entity Identifier: [Name]

[VIDED_STORE] Entity Identifier: [Store_Num]
[Wholesale_Company] Entity Identifier: [Wholesale_Company]
[[DEPARTMENTI]] Weak Entity Identifier: [Dept Name,Store_Num]
<BUY> Relationship Identifier: [Video_Company,Wholesale_Company]
<BENT> Relationship Identifier: [Cust_Num Film_Title,Store_Num]
<REQUEST> Relationship Identifier: [From_Store To_Store]
<SELLS> Relationship Identifier: [Cust Record Store]

<WORKS_IN> Relationship Identifier: [Emp_Ilum Store_llum]

54

Subclass superclass relationships are created in step5.

subclass('COMEDY’,'FILM').
subclass('MEMBER’,'CUSTOMER").
subclass('MUSICAL','FILIN").
subclass('THRILLER','FILIN').

In step6 all relationships are completed with the entities participating in
the relationships. When a new relationship between two entities is created
the user is asked to give it a name.

Please type in the name you wish to give the relationship

between the entity video_store and the entity video_company

runs

relship('BUY',['"WHOLESALE_COMPANY','VIDEO_COMPANY']).
relship('RENT',['VIDEO_STORE','FILIN','CUSTOMER']).
relship('REQUEST',['VIDED_STORE']).
relship('SELLS'['VIDEO_STORE','CD_RECORD','CUSTOMER']).

relship('RUNS' ['VIDEO_STORE','VIDEO_COMPANY']).
relship('WORKS_IN',['VIDEO_STORE','EMPLOYEE']).
id_dep('DEPARTMENT','VIDEO_STORE").

Mapping of the functional dependencies for binary relationships is done in

step7. The user is requested to provide the correct mapping in the
following way.

In order to assess the functional dependency between |VIDEO_STORE]|
and |EMPLOYEE| in relationship <WORKS_IN>, please chose the correct
dependency listed below by typing the number {, 2, 3, or 4.

1. There is a functional dependency from |VIDED_STORE| to |EMPLOYEE]|.
2. There is a functional dependency from |EIMPLOYEE| to |VIDED_STORE].
3. Both of the above functional dependencies exist.
4. None of the above functional dependencies exist.

2

33

The final schema produced by MAKEMODEL3 is shown in Figure 6.10
below.

Wholesale M N\Buwy M Video
Company A4 Company
1 Employee
runs :
M
Request % orks
M in
1
. 7\ Video
Film Store - Dept
Rent

Customer -———<> Sells
% CD

| Records

Comedy

Member

.Eigure 6.10 Example of a schema produced by MAKEMODELS.

6.4 CONCLUDING EVALUATION

A new, highly automated, method for translating a relational database to a
conceptual schema has been presented here. This method has been
implemented in the system MAKEMODEL3. Inclusion dependencies
between the different relations of the database are generated and
suggested for the user. These are utilized for creating the entities and
relationships of the conceptual schema and for connecting these data
structures to each other. A dictionary of synonyms is used in the process
of generating possible inclusion dependencies. The dictionary increases in
size with each occasion the system is used for creating a new conceptual
schema. This renders the system dynamic and enables it to function as a
learning system.

The system is also fairly flexible as it accepts a database both with or
without instances. When instances are provided, the set of potential
inclusion dependencies arrived at by the system is a complete set. In this
case, the dictionary of synonyms is not needed although it does become
updated with information from the accepted inclusion dependencies.

The method on which MAKEMODEL3 is based appears to work on
many examples of relational databases. The correctness of the method has,
however, not formally been proved. This is a major project which ought to
be taken up in future research.

56

A logical next step, to be researched, for improving the method could be
an enhancement of the dictionary. One idea is to have several dictionaries,
a different one for each domain. This would ensure that the dictionary

remained within a reasonable size thus preventing unfeasible search time
through a very large dictionary.

57

7

CONCLUDING REMARKS AND RECOMMENDED FURTHER RESEARCH

7.1 INCLUSION OF BACKGROUND KNOWLEDGE

While the combined method described above is more coherent than both
the method based on similarity in attribute names and that based on
supplementing the database with inclusion dependencies, it still falls
short in the aspect of mechanization. Reading the instances of the entire
database in an attempt to establish inclusion dependencies can be greatly
inefficient. Moreover the necessity of user interaction, to confirm
ambiguous subset/set relationships, arises far too often. Using a dictionary
of synonyms does, of course, alleviate some of the extra processing, but the
information required from the user is still extensive. To solve this
problem, an approach which takes domain information into consideration
could be examined.

Many researchers in the field of Al stress the importance of
background knowledge for any agent (or process) that tries to extract
semantic information from some given situation. John Sowa, in [Sowa84],
proposes several ways of making such background information available.
Among these are scripts and memory organization packets which are
instances of schemata and prototypes. A script for a concept is a
description of a sequence of events in a particular context. Memory
organization packets (MOP) are like small scripts that link to other MOPs.
A schema is a semantic description of a concept and a prototype is a
description of a typical instance of a concept. By augmenting a database
with background information, the mapping algorithm is provided with
semantic information relevant to the domain of the database. This gives
the algorithm a possibility of obtaining a fair amount of the information it
needs to carry out the mapping from a source other than the user.

A method for mapping a relational database, supplemented with
domain information, to a conceptual model, rich in semantics, is suggested
for further research and a rough outline is presented below.

The basic idea is the following: two databases are supplied, a relational
database (RDB) and a background information database (BIDB), which is
initially empty. An attempt is made to match the relation names in the
RDB to concept names in the BIDB. When no match is found, the user is
asked to specify the full name of the relation under examination (the
reason for this is that names may be abbreviated or slightly altered in the
RDB). If a match to the full name is still not found, it means that the BIDB
lacks this particular concept. The user is asked to provide information
about the concept. This information is then added to the BIDB. When a
match is found, for a concept which will map to an entity type or a
subclass entity type, the appropriate entity type is created. When a match
is found, for a concept which will map to a relationship type, the keys of
the other relations in the RDB are examined in order to find the entities
belonging to the relationship. Concepts representing relationship types, in
the BIDB, are furnished with semantic information specifying the case
structure of the concept. Relationships are then created from the relation
specifying the relationship, relations specifying the entities belonging to
the relationship and case grammar information describing the relationship.

58

The data describing background information can be structured in a number
of different ways, any one of which could be chosen to be used here.
Scripts or memory organization packets, discussed above, are two possible
representations. Frames, data objects consisting of a collection of slots
that describe different aspects of the objects, presented by Minsky in
[Minsky75] could be used to describe entities. An enhanced predicate
logic representation APC (Annotated Predicate Calculus) presented by
Stepp and Michalski in [Stepp86] is a typed predicate calculus with
additional operators used to describe objects and general problem-specific
background knowledge. A concept dictionary, structured as a semantic
net, containing deep case structure of the concepts with default values for
the cases, presented by Atlerman in [Alterman85] seems to be another
feasible possibility. The choice of type of data representation is an
important one which merits more research.

The quality of the mapping process depends on the state of the BIDB.
As the BIDB increases in size and available domain knowledge becomes
more comprehensive, the need for user input decreases and the mapping
process becomes more mechanized. A significant advantage of the system
is that it improves each time it is used, as the BIDB is, by necessity,
updated to hold more background information pertinent to the domain.

7.2 SEMANTICALLY RICHER SCHEMA

The conceptual schema created, can be made into one richer in semantic
information than ER or Extended ER models. By combining the
conceptual schema from the area of databases with some type of semantic
network from the area of knowledge representation within artificial
intelligence, an improved schema can be obtained. Perhaps one of the
most expressive, best refined conceptual graph is that proposed by Sowa in
[Sowa84].

An example of such a schema, suggested by Sowa, is illustrated below.

BUS:*X c—@-—TRAVEL -SPEEDS 55mph
(=) & (=)

DRIVE PASSENGER:* |
DRIVER NUMBER = 50

Figure 7.1 A semantically rich Conceptual graph.

39

The information expressed in the schema, shown in Figure 7 above, is to
be read as follows: A bus contains a set of about 50 passengers, it is the
instrument of travel by those passengers at a speed less than or equal to 55
miles per hour, and it is the object of driving by some driver.

This schema can, for example, be combined with the EER schema
utilized by the three methods described in this paper. The case structures
present in the schema could be stored in the BIDB. The presence of these
structures in the BIDB would serve to facilitate the mapping process. They
could also be used to make user questions, where necessary, more
intelligible for the user. The most significant advantage of a combined
schema lies, of course, in its capability of being able to express a greater

amount of semantic information than either of the two schemas can
separately.

60

[Alterman85]

[Briand84]

[Briand87]

[Bruce89]
[Chen76]
[Chikofsky90]

[Date86]

[Davis84]

[Davis87]

[Dumpala83]

[ElMasri85]

[Johannesson89]

[Kalman89]

[Korth86]

[Minsky75]

[Navathe87]

[Nilsson84]

REFERENCES

R. Alterman, "A Dictionary Based on Concept Coherence",
Artificial Intelligence, vol. 25, no. 2,1985.

H. Briand, "Expert System for Translating an E-R
Diagram into Databases”, "Fourth Internationa
Conference on Entity-Relationship Approach”,1984

H. Briand, "From Minimal Cover to Entity-Relationship
Diagram", "Seventh International Conference on Entity-
Relationship Approach”, 1987.

T. A. Bruce, "DA Supply, Business Demand", pp. 54-59,
December 89, 1989.

P. P. Chen, "The Entity Relationship Model - Towards a
Unified View of Data", vol. 1, no. 1, 1976.

E. J. Chikofsky and J. H. Cross II, "Reverse Engineering
and Design Recovery: A Taxonomy",pp. 13 - 17, January
1990, '

C. J. Date, "An Introduction to Database Systems",
Addison-Wesley Publishing Company, 1986.

A. Davis, "A Methodology for Translating a Conventional
File System into an Entity-Relatinship Model", "Fourth
Internationa Conference on Entity-Relationship
Approach”, 1984.

K. H. Davis and A. K. Arora, "Converting a Relational
Database Model into an Entity Relationship Model",
"Seventh International conference on Entity-
Relationship Approach”, 1987.

S. R. Dumpala and S. K. Arora, "Schema Traslation Using
the Entity-Relationship Approach"”, in "Entity-
Relationship Approach to Information Modeling and
Analysis”, Ed. Chen, 1983.

R. ElMasri, "The Category Concept: An Extension to the
Entity-Relationship Model", Data and Knowledge
Engineering, vol. 1, no. 1,1985.

P. Johannesson and K. Kalman, "A Method for Translating
Relational Schemas into Conceptual Schemas", "Eighth
International Conference on Entity-Relationship
Approach”, 1989.

K. Kalman, "Implementation and Critique of an Algorithm
which Maps a Relational Database to a Conceptual Model",
SYSLAB Working Paper 151, Stockholm University, 1989.
H. Korth and A. Silberschatz, "Database System
Concepts", McGraw Hill, 1986.

M. Minsky, "A Framework for Representing Knowledge",
in "The psychology of Computer Vision", Ed. P. Winston,
O-Hill, New York, 1975.

S. B. Navathe and A. M. Awong, "Abstracting Relational
and Hierarchical Data with a Semantic Data Model",
"Seventh International Conference on Entity-
Relationship Approach”, 1987.

Nilsson, "The Translation of a Cobol Data Structure to an
Entity-Relationship Type Conceptual Schema", 1984.

[Shoval87]

[Sowa84]

[Stepp86]

[Teorey86]

[Winans90]

61

E.-C. Shoval, "A System for Automatic Database Schema
Design Based on the Binary-Relationship Model", Data
and Knowledge Engineering, vol. 2, 1987.

J. F. Sowa, "Conceptual Structures: Information
Processing in Mind and Machine", Addison-Wesley
Publishing Company, 1984.

Stepp and Michalski, "Conceptual Clustering of
Structured Objects: A Goal-Oriented Approach”, Artificial
Intelligence, vol. 28, no. 1, 1986.

T. J. Teorey, "A Logical Design Methodology for Relational
Databases Using the Extended Entity-Relationship
Model", vol. 2,1986.

J. Winans and K. H. Davis, "Software Reverse Engineering
from a Currently Existing IMS Database to an Entity-
Relationship Model", "Entity-Relationship Approach”,
Ed. H. Kangassalo, pp. 345-360, Lausanne, Switzerland,
1990.

	page1
	titles
	a
	Reverse modeling
	from
	Relational Schemata
	to
	Katalin Kalman
	SISU

	images
	image1
	image2
	image3
	image4
	image5
	image6

	page2
	titles
	Reverse Modeling

	page3
	page4
	page5
	page6
	page7
	titles
	1

	page8
	titles
	2

	page9
	images
	image1

	page10
	page11
	titles
	3

	page12
	page13
	page14
	titles
	4

	page15
	page16
	titles
	cDmpany

	page17
	page18
	titles
	n

	page19
	page20
	page21
	page22
	titles
	Hospital
	I Hospital K>-IEJ~EJI

	images
	image1

	page23
	images
	image1

	page24
	images
	image1
	image2
	image3

	page25
	titles
	CDUnTRY(~.~&ID).
	I nfl.
	I ~ 1----<<) Rate
	: Country ~ Currency : -'
	Year
	I Country I-----<Okn:~e
	I Vear

	page26
	titles
	Piano

	images
	image1

	page27
	titles
	Person
	T eacher
	Philosophy
	Distance
	City

	images
	image1
	image2

	page28
	titles
	Hotel

	images
	image1
	image2
	image3
	image4

	page29
	titles
	City
	Country

	images
	image1
	image2

	page30
	titles
	Without the faulty candidate key substitution a different conceptual model

	images
	image1
	image2

	page31
	titles
	Husband
	I Surgeon 1---_-<O~~kS
	I Hosp.

	images
	image1

	page32
	page33
	titles
	5

	page34
	page35
	page36
	images
	image1

	page37
	images
	image1
	image2

	page38
	images
	image1

	page39
	page40
	titles
	- -

	page41
	images
	image1
	image2
	image3

	page42
	titles
	.•
	"
	"
	. , .

	images
	image1

	page43
	titles
	- - - ~> - - - r-c~;ntr;--:

	images
	image1

	page44
	titles
	o

	page45
	images
	image1
	image2
	image3
	image4

	page46
	page47
	titles
	6

	page48
	page49
	page50
	page51
	page52
	titles
	Spectator
	Movie

	images
	image1
	image2
	image3

	page53
	titles
	Film
	Foreign
	Foreign
	..
	"
	,
	,
	,
	,
	,
	,
	,
	"
	"

	page54
	titles
	I Customer 1---<<S>~_~ Fi_lm __ --,
	Member
	Video

	images
	image1

	page55
	titles
	Customer
	Video
	Video
	Video

	images
	image1

	page56
	titles
	Store

	images
	image1
	image2

	tables
	table1

	page57
	images
	image1

	page58
	page59
	page60
	page61
	images
	image1
	image2

	page62
	page63
	titles
	7

	page64
	images
	image1

	page65
	page66
	page67

