RAPPORT — DECEMBER 1998

Metadata on the Web
using RDF

Dag Ekengren

SWEDISH RESEARCH INSTITUTE FOR
INFORMATION TECHNOLOGY — SITT AB

Forord

Den hiir rapporten beskriver RDF, The Resource Description Framework, en W3C-rekommendation
for metadata om web-resurser. Informations- och tjansteutbudet pd ndtet Skar kraven pd att kunna
beskriva struktur och innehall, dels for att undeldtta sékning, men dven for att mojliggdra samverkan
och informationsutbyte mellan olika web-tillimpningar som producerar information och tjénster. RDF
4r ett forslag till hur detta kan &stadkommas pé ett standardiserat sitt, baserat pa en tillimpning av
XML.

Rapporten ir skriven av Dag Ekengren och ir baserad pd ett examensarbete knutet till projektet
Multimedia Broker pi SITI-SISU. Inom projektet Multimedia Broker utvecklar man en platform for
databasdriven web-publicering, dir en viktig del #r att strukturera informationsprodukter som skall
kunna erbjudas i via nittjanster. Centralt blir hér att hantera metadata for innehéllet i sadana
produkter.

Den stora potentialen i RDF ligger i att den kan bli en de facto standard for att klassifiera och relatera
alla former av resurser pa nitet. Det handlar hir inte om att infora ett globalt klassificeringssystem for
hela Internet, utan snarare om hur olika klassificeringar kan relateras och goras tillgangliga.
Rapporten ger en beskrivning av RDF och exemplifierar med en tillimpning. Rapporten vdnder sig till

utvecklare, infomationsmodellerare och den som vill f4 en insikt om RDF och metadata p nitet.

M. Ahlsén

ABSTRACT 3

1. INTRODUCTION 4
1.1 OBJECTIVES AND REQUIREMENTS
1.2, R B et s s e R R R R A B T R STt o
1.3 APPROACE svusicmnnssimmsimminsiminn st istaisin
1.4. ORGANIZATION OF THIS REPORT

2. BACKGROUND i
2.1, INTENDED TISE R RIDE s st mn sttt s oo e e e Sl i e T e i e e S N AR
2.2 I TR O P E R A BT Y ottt R e s B s e G ST i e s et
%5 RESOURCE DISCOVERY AND IDENTIFICATION

3. RDF BASICS 11

3. SIMPLE: STATEMENTS ~— INODES AND ARCS i crisionresisisisisnisnisisnimsmismismismmssssll
3.2, USE OF THE DATA MODEL IN PARSERS

33, ADDING A SCHEMA USING XM, NAMESPAGCES s iaussstsenssssssssinss ses Siissss s testsesvrsiveassssiass 1%
3.4, TISING RESDURTES A8 VATIES 510 mtes conssis-nasssbanssnssnssnssss s8sassansssisssvs s sassmmss ssvas v o tasanaainiaies
3.5, COLLECTIONS — BAG, SEQ AND ALT
3.6. STATEMENTS ABOUT STATEMENTS — REIFICATION ...cccecmemesmenraneesassancesasesssssssasssssassssassssassnse 15
3.7. THE DESCRIPTION CONSTRUGT. . <. ssvssssssismainivississrsisssissinimsssrss s raims i issssssnmssatasassivsasaiad |
3.8. ABBREVIATED SUNTAR cotvus cvosrerecsvsseinsisss ot fes (arsim i st i e do- e ot S S et iR S A 17

4. APPLYING RDF MODEL AND RDF SCHEMA 19
4.1. QUALIFYING PROPERTIES — NON-BINARY RELATIONSuccrteirameessimsssesiessesesessnsssesaeseesansns 19
4.2 MATH BXERCISES IN' A CONTEXT ossisinsssisonassisissisosissmssississs sttt 20
4.3, RIDE, S CHENIRS i ovass e soakesstaon Soesrinme i a s o e S A e o s e S T A AR s 21

4.3.1. Type System — Classes and Properties..

FBD COMSRIIII csmiins i iami s AT o T
4.3.3 Vosabularies Vel iSCHEMGScisiuinimmninssimrsmeseriotvesadisssiniisbesisssbas i rinsasspanssspossonsosinsison
4.4, DOCUMENT CONTENT DESCRIPTION — DCD.

4.5. RIE AS MEANS OF TRANSPORT uswssasssssssssssssssmsss sy e ms s oS v sysss s sawns
4.6. T BT s e o i R o S S P S e S0 PR B 8 S o ST b i
5. DESIGN AND IMPLEMENTATION 30
5. RDF DATA MODEL: AR S CHEM .« e oiaavsd sou gsmh ot (o e s 5o s st St S e dasaditin 30
5.2, SERVER SIDE — MULTIMEDIA BRORER: c.cxisvisrsrsssssrsisasssqussnsensoiscisassaosasoussivsshns ssssnvessansessassrs 32
520 THEXSLIPPOOBSEOP s tusmsstmessst ot e s Eivs b s s SSRGS S A PR W 34
5.2.2. Other Server IMPIEMERtAIONSc..iinmvicsivinisiifiimsosisssssesissmoivnismmosssmssssmsasrnesssasios 35
53 CLIENT SIDE — THE RIDE CLIENT wuuvssusssssissvossnsss s a0 0560635855855 85554 660356455 s s eusa sasneass 36
5.3.1, RdfClient Furctionality — A GUIitded TOUF.........cccos)rsiinsioniassnonsseomssnsomsrssmsesestsssssssssassts 37
9150, InSide RENETICHT v cvivcstuncn et avsssamstibesiisdintinsuess i Svssoss msiesacswsstetoiiasss e Sevon ook 42
5.3.3. Different Views of Data.... .
DB SUIAIGEY ccinminbitnmmmicsinionsnsisss i insais Vs ekt oo o s BT oo S AR A S MR Y s A A o 47
6. FUTURE WORK 48
6.1. INDEX SERVERS v icvviaisiaiamitosammiiissiaiat isvenissossisont ooy iraoniSesinisa dSsmmsste iesseramiisssraiinsSonipnsd 48
6.2 RDF AWARE WEB BROWSERSooutritiriiaiirraerassiesiesiess e ss s e snsere s 48
6.2 SOFTWARE P OIENTTS, ovueissssssestsinssssssin 5655 585845 060065056558 650 05000050 TR s Sv oM PSR STR 49

6.4. BXISTING DOCUMENT ANALYSEIS «.ciunsinreass irnensarsmnss innionf sossasnssi insi asass irasins ossssssemirmsssssesssnsssisnes 49
7. CONCLUSIONS 50
ACKNOWLEDGEMENTS .-.51
REFERENCES 51

1

1. INTRODUCTION

Searching for information on the World Wide Web often proves time-consuming and tedious.
Finding the information you want is difficult to automate. Search engines indices information
based on occurrences of word in bulk text documents. This can be illustrated by the following

example:

Example: You want to find information on documents wsiten by William Shakespeare and
type “William Shakespeare” into a search engine such as Lycos, Infoseek or Altavista. The
search engine retums a large number of references to documents containing the words
“William Shakespeare”. Alta Vista reports more than 40 000 matches to a query on
“William Shakespeare”. Most of the matches are irrelevant to our search as they refer to
documents abot Shakespeare rather than 4y Shakespeare. The search engine may even
return a match on this document!

Clearly we need some better way to describe our information so that search engines can give
results with much better precision. The information describing information is referred to as
mladia.

The Multimedia Broker developed at SITI! is a software architecture that would benefit from
Metadata and is used as a case study in this report. Multimeadia Broker is an EU funded research
project that aims to integrate a number of multimedia techniques into an infrastructure, which
will support publishers with new means of producing, structuring, disseminating and selling
content and information products [MMBROK]. The system provides products and services to
end users on the Intemet by combining components stored in a database in real-time. The
services and products can be adapted to individual users based on their user profiles and
individual preferences. The profiles are built up from the history of actions requested by the user.
The preferences are specific requirements provided by the user.

We have now realized the need of metadata and introduced a particular piece of software
that would benefit from a metadata implementation. We haven't yet discussed what metadata is.
The Macquarie Dictionary defines the prefix Meia as meaning "among", "together with", "after"
or "behind". This suggests that metadata is data that comes together with other data to describe
that data’s use or interpretation. The metadata is a “fellow traveler?” of our data.

Meiadaia is often described as “data about data”. A good example of metadata is the card
system used in public libraries. The cards contain decriptiors about the books in the library. In this
case the books are our data and the cards are “data about our data”.

The descriptions on every card follow a certain shem. The schema tells us what type of
information we can expect to find on each card, i.e. the schema provides the criteria with which
the books in our library are described. A good schema for libraries should probably contain
elements like 7itle, Cragior and Publisher.

The cards are metadata to the books and the schema is metadata to the cards. This suggests
that the distinction between data and metadata is not always dear, rather it depends on the

1 SITT — The Swedish Institute for Information Technology. http: /Fewaiisd

2 Spunik in Russian.

http:///www.siti.se

application. What is considered to be metadata in one application may be considered data in
another.

One problem today is the great variety of standards and classifications for describing reszaas.
Resources can be documents, images, sounds, basically any kind of data. There has been some
work for providing simple metadata embedded in HTML3 documents, but until now there have
been no recommendations for how general resources should be described on the web. The
problem is often that products or documents are described in existing databases, every database
with its own classifications and representation. This is fine for closed systems that are used in a
single company or organization. However, with the rise of the web the need for exporting data
and metadata has emerged.

1.1. OBJECTIVES AND REQUIREMENTS

The data in existing databases should be mapped and packaged in a general way so that other
systems can utilize it. Specifically, the Multimedia Broker needs to package its products with
descriptions that can be interpreted by other systems. Some sort of metadata description
framework is needed.

The metadata for the Multimedia broker should enable:

Resaunrce Discovery: The products provided by the Multimedia Broker should be described and
classified so they can be indexed by web search indexes (for example other brokers).

Resaure Authoring: Users should be able to browse and search provided products. The
descriptions should enable the user to compose products that are tailor-made for his/her needs.

Resaue Exchange It should be possible to exchange information and data between
heterogeneous systems, that is systems that have their own intemal representation of the data.

We want to describe the products and services so outside metadata consumers can discover
the products and relationships between products. We also want to be able to describe and export
products and services to other Multimedia Broker systems or similar systems from other vendors

The metadata framework should be based on web standards to enable #egpenbility with
other web systems, such as search indexes and web browsers. Solutions not dependent on any
particular software vendor should be preferred. Classifications that are widely understood should
be used.

Another objective is to implement a client that can read, parse and browse RDF descriptions
provided by the Multimedia Broker as well as other RDF data sources.

1.2. RDF

XML* has emerged as the universal data format for the web. XML can be used to store and
transport any kind of information, including metadata. XML is a grammar for creating mark-up
languages, called XML applications. One such XML application is RDF, Resource Description
Framework.

3 Hypertext Markup Language

4 XML — The Extensible Markup Language

RDF is a data model for describing 7esours. A resource in this case is anything you can refer
to with a URI®. Examples of resources are documents, images and sounds. A resource could also
be a more abstract thing, such as a service or a process, but it must then be represented by
something that can be referred to by a URI, e.g. a document describing the resource.

RDF gives us is a data model for describing our resources and a standardized way of
expressing that model in XML.

The World Wide Web Consortium (W3C) has working groups that deal with metadata on the
web. The results of their efforts are the “RDF Model and Syntax” Fel! Hittar inte
referenskiilla. and “RDF Schema” [RDFSCH] specifications. RDF is the web metadata
framework that will be recommended by W3C.

1.3. APPROACH

The approach of this project is to use the RDF specification to describe the products and
services provided by the Multimedia Broker system using the Dublin Core classification scheme
(section 2.2). As a case study educational products of a fictitious company “Educational Products
Inc.” are is described with RDF. The products described in this case were books containing math
exercises. This gives us two levels of granularity, which is interesting for the RDF
implementation.

Where Dublin Core is not sufficient to fully describe a product, we use a classification scheme,
which we create ourselves in this project.

The RDF description generation is very well integrated with the other components of the
Multimedia Broker system. The descriptions are made both on a product level and at a finer grain
of resolution.

The RDF dlient, a sample RDF consumer that is able to browse and navigate any RDF
document, is implemented in Java, using XML and RDF parsers from IBM. We come to the
conclusion that a hierarchical graphical representation is sufficient for displaying the RDF data
model.

1.4. ORGANIZATION OF THIS REPORT

To fully appreciate this report, the reader should have some basic knowledge about the
Internet. Some knowledge about HTML and XML helps. The reader doesn’t have to know
anything about metadata prior to reading this report. First some background is given and related
technologies are presented. RDF is introduced and a general discussion on interoperability is
given. The Dublin Core dlassification scheme is introduced. In chapters 3 and 4 we model our
case study math exercise step by step, readers mainly interested in the RDF data model may start
here. The chapters are both an introduction to the RDF Model and Syntax specification and to
RDF Schema, as well as a guide to modeling a product in RDF. Examples of RDF applications
are given. In chapter 5, we show a complete RDF instance and schema for our math exercise
case study. The rest of the chapter describes how RDF can be implemented both on the client
side and the server side. Spedifically RDF is implemented on the Multimedia Broker server and
on a Java client, called RdfClien. These sections assume some knowledge about web servers and
Java. They are intended for readers who want to implement RDF on their own. In chapter 6
some ideas about the future of RDF applications are presented. Index servers, RDF browsers
and Software agents are discussed.

5 URI — Universal Resource Identifier. See section 2.3.

2. BACKGROUND

The history of metadata at the World Wide Web Consortium started in 1995 with PICS
[PICS] (Platform for Internet Content Selection). PICS is a mechanism for communicating
ratings of web pages from a server to clients: for example, whether a particular page contains a
peer-reviewed research article, or was authored by an accredited researcher, or contains sex,
nudity, violence, foul language, etc [RDFINTRO). The target group for PICS was initially users
such as parents worried about their children’s web usage. Using PICS they could set their
browsers to filter out any web pages not matching their criteria.

PICS is a restricted metadata framework that allows only certain things to be expressed. It is
too limited for the metadata required by the objectives of our project. RDF on the other hand is
a general metadata framework and a general knowledge representation mechanism for the web.
[RDFINTRO]

RDF defines a framework for describing resources with metadata. As mentioned earlier, the
distinction between data and metadata is not an absolute one. What is considered metadata by
one application would be data to another. The RDF model is not restricted to storing metadata; it
can be used to store any data. One example is the Mozilla web browser in which RDF is used for
many purposes [MOZ1]: “It’s a Swiss army knife and we will use it wherever it makes sense to
use the RDF data model as a representation language.” In particular RDF is used to store
bookmarks, history lists, search results and site maps.

“At the core RDF is 2 model for representing named properties and their values. These

properties serve both to represent attributes of resources and to represent relationships
between resources. The RDF data model is a syntax-independent way of representing
RDF statements.” [RDF]

Before we take on the RDF basics in chapter 3, let's address the “Why RDF, why not just
XML?” issue: XML gives us the freedom to define any markup language. We can define our own
tags and express constraints for the syntax of elements and attributes. So let’s say we would like
to define a markup language form describing resources on the web. We would need to use define
the elements that constitute our descriptions. We would have to figure out how to express
resources and attributes. We would have to publish this new XML application so that others
could use it. In effect, we would have to do what the W3C RDF Model and Syntax working
group has already done. Remember that RDF & an XML application.

2.1. INTENDED USE OF RDF

RDF is a framework for metadata that facilitates automated processing of web resources
[RDFFAQ]. RDF is a proposed standard that deals with issues such as Resoure Disaovery tO
provide better search engine capabilities; in aatakging for describing the content and content
relationships available at a particular Web site, page, or digital library; by irellige sofuuare qganis 1o
facilitate knowledge sharing and exchange; in ayuent mting; in describing cddions of pages that
represent a single logical “document”; for describing #ellectal property rights of Web pages, and
many others. RDF with digital signatsres will be key to building the “Web of Trust” for elenonic
ammere, ollaboration, and other applications [RDFFAQI.

Examples of the intended use of RDF according to W3C:

Cataloging Intellectual Property Rights
Intelligent Software Agents Digital Signatures

Content Rating Electronic Commerce
Collections of Pages Collaboration

Table 1 Inended use of RDF according to W3C

The effective use of metadata in applications requires that we have common conventions
and a common syntax, so that users beyond a small community can benefit from it. To allow for
machine processing of metadata strict standards are necessary. The common denominator for all
intended uses of RDF is #nierquambility. Interoperability is discussed further in section 2.2

RDF imposes structure and syntax, but does not stipulate semantics for each reue
description. aanwueity [RDF). A resource description community can be an individual, an
organization or a company. RDF lets each community create the elements needed in a standard
manner. To allow for communities to define their own elements, RDF uses sdamas. Schemas are
the set of properties, or metadata elements, defined by resource description communities. One of
the key features of RDF is to be able to reuse schemas. The standard way of declaring schemas
enables different resource communities to extend and reuse semantics from other communities’
schemas. One such schema for RDF is Dublin Core, which is discussed later in this paper.

2.2. INTEROPERABILITY

The key word for web technologies is #uagpenability. Interoperability is required for
applications where heterogeneous systems are involved. One example of interoperable data is
HTML documents. Users can view HTML documents using all kinds of computer hardware,
operating systems and browser software. If you follow the W3C recommendations for writing
HTML documents, you can be quite certain that they are readable by anyone. However HTML
documents are generally not machine-understandable, they are intended to be processed by the
human eye and the human brain.

The next step for the web is machine-understandable data. For this, we need interoperability
on (at least) three levels:

6 Schemas are sometimes called Vocdadariss.

|
|
Semantics |
Schemas (e.g.
Dublin Core)
Structure
RDF
Syntax
XML

Figure 1: Machineunderstandable doawments require interoperability on three levels.

The lowest level, syux, provides the required foundation for interoperability. Syntax
determines how the documents should be written, for example if they use markup language.
Examples of technologies that provide interoperability on this level are SGML and XML.

Interoperability on the strucwe level deals with how units of information (resources) are
structured and how relationships between them can be expressed. RDF operates on this level.
RDF was inspired by Structurad Maps, a technology invented before the web.

Structured Maps are based on Topic Navigation Maps [ISO13250] defined by the SGML
community. Structured Maps provide a layer of semantics and relationships on top of existing
data. References to documents can be typed with for example author-of or written-by
relationships. A Structured Map can be compared to a normal road map. It presents a viev of the
information. A road map is a simplified view of the world. Depending on our interests, we can
have different maps covering the same part of the world, emphasizing different aspects of the
existing information. For example, one could have a map that shows all McDonald’s restaurants
and another map with topological data. Structured Maps inspired the work on RDF. [DELCA]

Interoperability on the semwuic level requires agreements on the semantics expressed. This
requires that both the producer and the consumer of the information agree on what the
semantics of an image, a car or a title is. Classification schemes, such as Dublin Core operate on
this level. The Dublin Core (DC) is a 15-element metadata element set intended to facilitate
discovery of resources. Originally conceived for author-generated description of web resources, it
has also attracted the attention of formal resource description communities such as museums and
libraries. [DCPURL]

The Dublin Core has been discussed through a number of international workshops [DC4]
[DC5). Experts from many different communities have tried to reach consensus around what
elements to use and their exact semantics. This is after three years still an ongoing effort.

Design principles for the Dublin Core are [DCPURL] are Swpiicity, Sevantic hiergpenability,
Intemational Consensus and Flexability. Simplicity is important for enabling widespread use. It should
be easy for non-catalogers to understand the elements involved. The flexibility makes it possible
to encode additional structure and more elaborate semantics where needed without sacrificing
interoperability with older software.

The Dublin Core has historically had a close relationship with RDF. At the second DC
workshop in Warwick, a conceptual foundation for a metadata framework was laid, the so-called
Wanvick Frameuork [WP] [DC5). This framework, along with the Meia Conlertt Frameauwork [MCF]

formed the nucleus for the development of RDF. The Dublin Core and the RDF working groups
share a number of members, and the co-evolution of these projects has added to the progress of
each. According to a Dublin Core Workgroup decision (September 1998) “the RDF data model
is the foundation for the DC data model”.

The Dublin Core Elements are [DCPURLI:

Content Intellectual Property Instantiation
Title Creator Date
Subject Publisher Type
Description Contributor Format
Source Rights Identifier
Language

Relation

Coverage

Table 2 The fifieen Eleaments of Dublin Core

Each element is optional and repeatable. Furthermore, metadata elements may appear in any
order, and with no significance being attached to that order.

The Dublin Core initiative has achieved wide acceptance on the Intemet. It is a vocabulary
that is well suited for describing online resources. It is a good idea to support as many Dublin
Core elements as possible in any RDF metadata implementation. The number of supported
elements is often restricted by the data available in existing databases.

2.3. RESOURCE DISCOVERY AND IDENTIFICATION

A Resaurce is any real or conceptual object that can be identified. Discorery involves fiding and
retrieving of resources that are relevant to the user of the system. Users are usually human users but
may be automated processes that have a need to fulfill a resource discovery requirement [RDU].

One reason for imposing structsre on information is to enable Resaurce Discovery [RDUJ, ie. to
make data accessible and easy to find and to label resources so that their relevancy can be
estimated. Ideally this should be done automatically by agents or search engines with minimal
effort from the user. In order for this to happen on the World Wide Web we need standards for
all the levels of interoperability (section 2.2).

Resource discovery also involves actually retrieving the discovered resource. To retrieve the
resource we need some means of identification. Every resource available on the Web has an
address that may be encoded by a Uniersal Resaunce Identifier, or URI [HTML]:

URIs typically consist of three pieces: ¥ The naming scheme of the mechanism used to
access the resource, 2 the name of the machine hosting the resource and 3 the name of the

resource itself, given as a path.

Example of a URI is http: /[3

10

http:///www.ekengren.com/rdf/default.asp

3. RDF BASICS

Rather than trying to describe the RDF Model and Syntax in every detail we will provide a
step by step explanation of how the description of a math exercise product was modeled in our
educational products case study. In each step we will provide examples of how the RDF data
model is serialized to XML. We will also try to explain and highlight interesting features. For
more details- and formalism, please refer to the W3C RDF Model and Syntax draft [RDF].

3.1. SIMPLE STATEMENTS - NODES AND ARCS

The foundation for RDF is a model for representing resources with named properties. The
same data model can be expressed in several ways: with a graph of nodes and arcs, serialized to
XML or as a collection of triples.

The model consists of three object types:

1

Resoues are the “things” we describe. A resource can be anything we can refer to with a
URL. In fact, URIs can be used to reference agibing. On the web RDF will probably be
used to describe documents that are retrieved with HTTP. URLSs (which is a subset of
URISs) can identify such documents. An example of a URL is

http:/ /www.ekengren.com/rdl/math_exercisqd

math_exercise

Figure 2: A math exercise resource. Only part of the URL is inchuded for clarity.

Properties are what we describe our resources with. In the RDF data model we can
express properties as an arc, or an arrow. The properties are named, and the names
define their meaning.

title———»

Figure 3: A named property. Good for giving a title to our math exercise.

Statemenss. A statement is a triple consisting of a resource, a named property and a value.
The value of the property can be either a string (called /iteral) or another resource. Both
values that are strings and values that are other resources are represented as nodes in the
RDF data model. Now we are ready to make a very description of our math exercise,
using RDF:

11

http://WVvW.ekengren.com/rdf/math_exercise

| math_exercise ——tite— "Pigeon and Email
B o %

Figure 4: This is our first RDF statanent!

That's really all there is to it: Nodes and Archs! Now, let’s try to express our math exercise
description in XML:

<rdf:Description about="http://www.ekengren.com/rdf /math_exercise”s

<title>Pigeon and Email</title>

</rdf:Description> ;

The rdf-Deription element creates a node that represents our math exercise resource, The
next line creates an arch and a /iteed resource. We can make our description slightly more
complex by adding more properties:

Pigeon and Email
/ N tiﬂs’/"F
| math_exercise | —creator » Dag Ekengren
i - date

T 1998-11-13

Figure 5: More statements about ovrmath exercise

The XML serialization is:

<rdf:Description

=<creator>Dag Ekengren</creators
<date>1998-11-13</date>
</rdf:Descriptions

3.2. USE OF THE DATA MODEL IN PARSERS

There is a number of syntactic variations possible when serializing the same RDF description
to XML. Things can be in different order and there are syntactic varations such as abbreviation
(more on this in section 3.8). The data model can be used intemally in an RDF parser to
determine if two RDF descriptions that are serialized to XML are the same semantically. The
following XML serializations represent the same data model:

<rdf:Description about='ht:§:/fwww,ekengren.com/:df!ma:lkﬁxercise'>
<title>Pigeon and Email</title>
<creator>Dag Ekengren</creators
<date>1998-11-13<c/date>

</rdf:Description>

and

<rdf:Description about="http://www.ekengren.com/rdf /math_exercize~
date=%1998-11-13" title="Pigeon and Email”
creator="Dag Ekengren” />
3.53. ADDING A SCHEMA USING XML NAMESPACES
Great, our math exercise already has more metadata than most resources on the web.
However, there is a small problem with our description. We have used the elements title, cretr

12

http://about=~nttP:I/www.ekang~en.co~/rc~/ma~h_exercise�~

and date from some schema we implicitly invented. We know the meaning of these elements, but
we would like the rest of the world to know as well.

What definition of title did we use when we chose the title “Pigeon and Email”? What is a
aaaior? Is it the company printing the b*ooks with math exercises or is it the author of the
exercise? In what format is the date stored? These are questions that a machine or a human being
would like answers to when they see our descriptions. Our description is of little value to them if
we can't provide this metameadain called sdham.

Fortunately, the XML namespace’ facility comes to our rescue. It lets us associate a URL
with each property. The resource referenced by this URL may be a human-readable resource that
describes the schema used. It may also be a schema in some machine understandable format. The
RDF Schema specification provides such a format [RDFSCH]. For now it will suffice to just give
a reference to some imaginary schema document. XML namespaces associates a schema URL
with a prefix that we use in our property names:

<?xml version=71.0"2>
<rdf :RDF KNImsS:TOL="NCCp:/ /www.w3 .0rg/rar-syncax]
[nIns:0Cc="HLLtD://purl.com/ac/elements/ .01 >
<rdf:Description EDOUCL="ICLD://WWW.CRENgr Bll. COM/ TOL/Matll_exXercise g
<dc:title>Pigeon and Email</dc:title>
<dc:creator>Dag Ekengren</dc:creator>
<dc:date>1998-11-13</dc:date>
</rdf:Description>
</rdf :RDF>

Here we have assigned the Dublin Core schema to the prefix dc Please note that we have
defined a schema nifsruax for the RDF-specific elements. An ordinary XML parser doesn't
know anything about RDF and treats elements in the 7 namespace no differently from elements
in for example the dc namespace. An RDF parser® however knows the semantics of elements
such as rdf-Description. Also note that the RDF document is enclosed in an #gfRDF element.

We can use several different schemas in the same RDF description. The schemas may be
defined by different schema authorities. The schemas can be used even if some elements exist in
both schemas, because a different prefix is assigned each schema. Two different schemas should
not use the same prefix to avoid ambiguity.

In the math exercise sample we will create a schema of our own for properties and classes
not supported by the Dublin Core. This schema will have the prefix ed}, as in “educational”.

3.4. USING RESOURCES AS VALUES

Up to this point, we have used simple literal values. One of the benefits of RDF is that we
can use resources to describe resources. We could let the value of the dazamior property be a
resource describing a person, in this case me. This resource could contain the name, address,

telephone number of the creator. It may even contain digital photographs and other complex
data.

7 Please refer to 0 for details on XML namespaces.

8 RDF parsers are often implemented on top of XML parsers. Because an RDF document is an XML application it can
be parsed by an XML parser, which builds a tree structure that represents the document. The RDF parser can then
parse that tree and look for elements in the 7 namespace.

15

http://xmlns:rdf="http://www.w3.org/rdf-syntax"
http://xmlns:dc="http://purl.com/dc/elements/l.O"
http://about="http://www.ekengren.com/rdf/math_exercise">

In our math exercise, it will suffice to use a literal value for dazaaor. We could add a picture
as a description of the math exercise though:

Pigeon and Email
= 4
dc:title
dc:creator— Dag Ekengren

dc:date
A

math_exercise

edu:content

pigeon.jpg

Figure 6: Showing off a resource property valie.

1998-11-13

<?xml version=*1.0"7?>
<rdf :RDF T :

IS egu="1Ctp /7 WWW. . CRENOI el . CoM raty sonenas/causcnenal >

<rdf:Description EDOUL="HLLD:/ /www.ekengren.com/rdl/math exercice”d

<dc:title>Pigeon and Email<«/dc:title>

<dc:creator>Dag Ekengren</dc:creator>

<dc:date>1998-11-13</dc:date>

<edu:image FESOUICE="HLLD://WWW.EKElgremn.col/taL/ inages/pigeon. pg] />
</rdf:Description>

</rdf :RDF>

The example above demonstrates the syntax for adding a rexue as the wike of a property.
The resource value may be in the same document as the RDF description or in another
document (as in this example). Remember that RDF descriptions are also resources. This means
that the value of a property may be an RDF description. This facility allows for highly structured
metadata.

3.5. COLLECTIONS - BAG, SEQ AND ALT

In RDF you often want to refer to a collection of resources. If you're describing a course you
may want to include a students property which refers to a collection of the students that attend
the course. If you're describing a web page you may want to refer to a collection of web servers
where the page is mirrored.

There are three different types of collection objects in RDF:

1. Bqgis used to declare a collection of resources where the ordering of the resources is not

significant. For example, in the collection of students the ordering of the students that
attend the course may not be important.

2. Seq is used to declare a collection where the ordering of the resources is ndeed
significant. Seg could be used if we were describing an exam and wanted an ordering of
the students according to their results.

3. Al is used to give alternative values to a single value. An application that is using a

property whose value is an A/t-collection can choose one (and only one) of the values in
the collection.

14

http://xmlns:rdf="http://www.w3.org/rdf-syntax"
http://xmlns:dc="http://purl.com/dc/elements/l.O"
http://xmlns:edu="http://www.ekengren.com/rdf/schemas/eduscnema"
http://about="http://www.ekengren.com/rdf/math_exercise">
http://resource="http://www.ekengren.com/rdf/images/pigeon.jpg"

In our math exercise in Figure 6, we have a adwaniant property that refers to a single
picture resource. What if our math exercise has more than one picture associated to it? Or an
audio clip for that matter? It would be nice collect these in a bag resource. In the following
example we have added a bag node as the value of the adwconint property:

Pigeon and Email
> 4

dc:title
math_exercise

A /—\
edu:content 1998-11-13 Qﬁi/

\ rdf:_1 / %

raf:_2 pigeon.jpg

Figure 7 We bave used a Bag to collect wild aat.jg and pigeon.jg.

Note that the bag node has no identifier and the node appears “empty” in the graph over.
We can add an ID-attribute to the Bag if we want to refer to it from other statements. The
content in the bag is referred to by the n#f_n-properties. The rgftpe property is used to declare
that a resource belongs to a certain class of resources, in this case the rdf:Bag class. Classes and
the rifypeproperty are covered in 4.3. The XML serialization of the example in Figure 7 is

<?xml version="1.0"7?>
<rdf :RDF

<rdf:Description 1ILTD: //Www . eKengren.
<dc:title>Pigeon and Email</dc:title>
<dc:creator>Dag Ekengren</dc:creator>
<dc:date>1998-11-13</dc:date>
<edu:content>
<rdf :Bag>
<rdf:1i resource = [http://www.eKengren.com/ralL/ilmages/pigeoil. Jpd]

/>

<rdf:11i resource = Fhttp://www.ekengren.com/rdl/ilmages/pigeoll. Jog]

/>
</rdf:Bag>
</edu:content>
</rdf:Description>
</rdf:RDF>

The rdf:_n properties in the data model appear as <1 1>-tags in the XML serialization.

3.6. STATEMENTS ABOUT STATEMENTS - REIFICATION

It is sometimes interesting to say something about statements, ie. give statements about
staterments. We could then express who made the description and when. Perhaps we trust

descriptions from a respected web page rating company more than descriptions from some
anonymous individual.

How can statements about statements be expressed in the RDF data model? We need to be

able to identify a statement so that we can refer to it. This can be achieved by a process called
i

15

http://xmlns:rdf=Hhttp://www.w3.org/rdf-syntax"
http://xmlns:dc="http://purl.com/dc/elements/l.O"
http://xmlns:edu="http://www.ekengren.com/rdf/schemes/eduschema"
http://about="http://www.ekengren.com/rdf/meth_exercise">
http://"http://www.ekengren.com/rdf/images/pigeon.jpg"
http://"http://www.ekengren.com/rdf/images/pigeon.jpg"

dc:creator—p Dag Ekengren

Figure 8 No reification bere, This statement cwot be referred to. Stnce no judgenent can be placed
on this statement, the statement is awisidered a foct.

The above statement is reified to:

dc:creator
"~ Dag Ekengren

rdf:predicate

statement00

Figure 9: The statement bas been reified

This is still the same statement as the one above, but we can now refer to it by the id
“statement00”. Now let’s give a statement about this statement:

dc:creator_ Dag Ekengren

rdf:subject dc:creator ‘

rdf:object

rdf:predicate

\ SR /S deicreator . john McEnroe
dc:date
1998-11-17

Figure 10: Statements about a statement. Who says that the creator of the resource is Dag
E kengren?

The serialization to XML is very simple:

<?xml version="1.0"?>
<rdf :RDF RIS IO ="t tD: / /WWW. W3 . 0rg/ Tar —syntaxy
RIS CC="Nttp://PuUrl.com/ac/elements/ .01 />
<rdf:Description>
<dc:creator ID="statement00”>Dag Ekengren</dc:creator>
</rdf:Description>

<rdf:Description about="#statement00”>
<dc:creator>John McEnroe</dc:creator>
<dc:date>1998-11-17</dc:date>

16

http://xmlns:rdf="http://www.w3.org/rdf-syntax"
http://xmlns:dc="http://purl.com/dc/elements/l.O"

</rdf:Description>
</rdE:RDF>

The statements with properties nffsubjct, nifobject and wifpredicaie are implicitly constructed by
the RDF parser.

3.7. THE DESCRIPTION CONSTRUCT

The description lets us bundle several statements. We can refer to the description to make
statements about the collection of statements as a whole. The description construct is simple in
XML but the data model is quite complex. Each statement is reified and the new nodes (such as
the one called “statement00” in Figure 10 are collected in a bag. The bag is given an id called

brglDD.

Let’s retumn to the math exercise example in Figure 5. We would now like to say who made
the description. We reify all the statements and put them in a bag;

RO math_book.doc IsPartOf
" < another math oo B i
exercise > desidentity cq:type
“ \ ‘“_»’.'_'l'__.‘edu:conzent Pigeon and Email
rdfi_3

dcirelation dc:title // Dag Ekengren

dc creator
rdf | » =
A math_exercise dc date ¥1998-11-13
« pigeon.jpg
rdf:_1

' ’rdf:.__2
edu: conte

,,,,,, r'e

3 <another math rdf:type
exercise > '

rdf:type rdf:_2

The answer to this
interesting exercise is 23

Figure 11: The Description aonstruct. The collection of statements called a descriptiondoes not need a
special construct n the data model. A bag container is used to dicate that a set of statements
belongs to the same description.

. One statement is removed to make the figure less cluttered. The serialization to XML is
simple because the reification and bag nodes are created implicitly by the parser. The only new
thing is the bgglD attribute in the rdf:Description-element.

<rdf:Description EECUC="HhtLD://wWww. cKkengren . com/rdr /math_exercise]
bagID="description00”>
<dc:title>Pigeon and Email</dc:title>
<dc:creator>Dag Ekengren</dc:creator>
</rdf:Description>

We can now make statements about the description identified by “description00”.

3.8. ABBREVIATED SYNTAX

RDF allows an abbreviated syntax where the statements are XML attributes in the
rdf:Description element. Abbreviation is useful for properties that aren’t repeated within a
description and where the values of those properties are literals. In this case, the properties may
be written as XML attributes of the description element.

17

http://abouC="http://www.ekengren.com/rdf/math_exercise"

The RDF description in 3.5 can be abbreviated to:

<?xml versipn=r1 077
<rdf :RDF iasccdfo
mins:dc="helfn:
xmlns:edu
<rdf :Description

dc:title="Pigeon and Email”

dc:date="1998-11-13">

<edu:content>

<rdf:Bag>
<rdf:1i resource = Lhttu: /www.ekengren.com/rdf/images/plgeon.jpgl

shtip: //www.w3 .0rg/rdi-Syltds]

= —

WwiW . eKengren. 7
Jc:Ccreator="rDag brengrern

/>
<rdf:1i>The answer to this interesting exercise is 23</rdf:1li>

</rdf :Bag>

</edu:content>

</rdf:Description>
</rdf:RDF>

18

http://xmlns:rdf=''http://www.w3.org/rdf-synLax"
http://xmlns:dc=''http://purl.com/dc/elements/l.O''
http://www.ekengren.com/rdf/schemas/eduschema"
http://about="http://www.ekengren.com/rdf/math_exercise"
http://"http://www.ekengren.com/rdf/images/pigeon.jpg"

4. APPLYING RDF MODEL AND RDF SCHEMA

4.1. QUALIFYING PROPERTIES ~ NON-BINARY RELATIONS

The RDF data model intrinsically only supports binary relations; that is, 2 statement specifies
a relation between to resources. There is however a recommended way [RDF] to represent higher
arity relations in RDF using just binary relations. The recommended technique is to use an
intermediate resource with additional properties of this resource giving the remaining relations.

An example of non-binary relations is when we want to use qualified properties. The Dublin
Core relation property is an example where this is useful. The rdaion property can be used to
indicate a relationship between two resources. We often want to be a little more specific and say

something about what ki of relationship the resources have, The way to do this is to qud the
relation property.

math_exercise |—dc:relation—»{ math_book.doc

Figure 12: An wnqualified dc:velation. What kind of relationship do the resources hewe?

The de:relation types come in pairs depending on which “side” the described resource are:

IsPartOf HasPart
IsVersionOf HasVersion
IsFormatOf HasFormat
References IsReferencedBy

IsBasedOn IsBasisFor

Requires IsRequiredBy

After qualification the data model becomes:

19

math_exercise math_book.doc

dc:relation

deq:identifier

deqg:type
IsPartOf

Figure 13: A qualified dc:relation. The relationship consists in ihe math exercise being parl ofa
math book A naw unmamead vode bas been credted. The namespace prefix for DC quialifiers is deq.

The XML serialization is:

<rdf:Description BRoUE="DCTD://www. eKengrer . comy/Tar el EXETCLiEE" g
<dc:relation>
<rdf:Description>
<dcg:identifier rdf:resource =
[EELp //www . ERENg T eI, COMy Pt /MaCI_DooK. oog * />
<dcg:type>IsPartOf</dcg:type>
</rdf:Description>
</dec:relation>
<dc:creator>Dag Ekengren</dc:creator>
</rdf:Description>

The dc:date-element we have used throughout this example can also be qualified to further
specify what meaning this date has for the resource. Is it the date of creation or is it date the
resource became valid? Let’s try it:

Pigeon and Email
v

de:title
dc:creator——- Dag Ekengren

math_exercise
1998-11-13
dc:date ¥
edu:image dcq:created

K
)) dcg:available
pigeonjpg "™ 1998-12-01

Figure 14: We heve qualified the dedate stateament. Great styjf!

The Dublin Core is workgroup is working on qualifiers for many other of the DC elements.
Refer to http://purl.org/DC/documents/working drafts/ for the latest details.

4.2. MATH EXERCISES IN A CONTEXT

One of the interesting things with RDF is the ability to describe resources with different
levels of granularity. Some users may want very detailed descriptions where a single resource
refers to other descriptions, while others are happy with a shorter description that is easier to

manage.

In our educational products case study, we sell books with math exercises. We can describe a
book as a complete product or as a product consisting of a number of math exercises, each with
its own descriptions. The math exercise descriptions may be placed inline the RDF document
that describes the book or it may be linked to the book with rdf:resource-tags. The advantage
with the former is simplicity. You can get the entire description, including descriptions for all the
math exercises in a single GET-request to the web server. The other approach has the advantage

20

http://about="http://www.ekengren.com/rdf/math_exercise">
http://"http://www.ekengren.com/rdf/math_book.doc

that the user can choose to get only the book description and perhaps a description to a few of
the math exercises.

To achieve this link between math books and math exercises we can use a doelaios-
statement as was mentioned in 4.1. Of course, our math exercise can be part of other math books
as well, i.e. many math books could refer to our math exercise using a edwiai-statement, The
dcrelation may not be very useful if the exercise belongs to several books.

e, math_book.doc | IsPartOf
T another math M dcq:type/v
L exercise > ¢ dc:identity

"""""""" i\ " edu:content

Pigeon and Email
raf:_3

4 derelation detile Dag Ekengren
4 /dc:creator

,":rdf:_1 / % Hate P1008-11-
& math_exercise £dc:date ¥ 1998-11-13
“raif._2 ' pigeon.jpg
ST A edu:conte@z:ﬂ _

< another math rdf:type
; exercise >

rdf:type raf:_2

The answer to this
interesting exercise is 23

Figure 15: Math exercise in a context, The maith exercise is part of a layger stnichure, in this case a
book. The dbtted lines are UR L-baundaries if the math exercises are not nline i the RDF
document describing the math book.

4.3. RDF SCHEMAS

We have already touched upon RDF Schemas in 3.3 and we're revisiting the subject here.
The XML namespace facility allows us to associate a prefix with a URL that defines a schemna.
We haven't yet looked into how that schema can be defined.

So what is a schema anyway? It is where we define our properties and chsss. We can give
human readable comments and define machine-understandable constraints on their use, We can
then declare that a resource belongs to a particular class. We have already used classes in section
3.5 and in Figure 15 above. As you can see, the unnamed (empty) nodes are of the class 7dfi2g.

There are many ways in which we could declare our schemas, The RDF Schema
Specification [RDFSCH] uses the RDF data model not only for describing resources, but for
expressing schemas as well.

4.3.1. TYPE SYSTEM — CLASSES AND PROPERTIES
Let’s define some classes for our math exercise example. A good place to start would be to

define a math exercise class, called a#«Exercie and define our irsne “math_exercise” to be an
instance of that class.

21

rdf:type
| math_exercise

Figure 16: We bave defined our math exercise instance to be of the class e Exercise. We can bave
lots of math exercise instances and they will all be of the same class.

This can be serialized to:

<?xml version="1.0"7?>

<rdf : RDF Enlns:rdf="ACCD:/ /Www.w3 .0rg/ AL -SyNCaxX]
1TS: :

nlns:edu="http://www.ekengren.com/r Y
<rdf:Description RROUC="NCLD://www.eXengren.Ccom/ra. /matll_exer
<rdf:type resource =
Fhtcp: //www.ekengren.com/rdi/schemas/eduschiemasEXercisey >
<dc:title>Pigeon and Email</dc:CiCle>
</rdf:Description>
</rdf :RDF>

Because RDF Schema is expressed using the RDF data model, it seamlessly extends our
RDF data model with the schema definitions. In the data model, the rgffpe-property doen't
differ from other properties such as dctitle or dcsubject. There is a special construct for

expressing the class of an instance in the XML syntax: This construct makes use of the XML
namespace facility:

<?xml version="1.0"7>

<rdf : RDF [T TOLI="NLCP:/ /WWW.W3.0Fg/ TGl -Sylca

banlns :de="http://purl.com]

P ne - cQUS L LD/ WWW . CRENCT B
<edu:Exercise pbout="http://www.eKengren.com/xdr/ma

<dc:title>Pigeon and Email</dc:title>

</edu:Exercise>

</rdf :RDF>

/>

We have replaced the rdf: Description element with a edu:Exercise element and removed the
rdf:type property. This doesn’t in any way change the data model, hence the serializations are
equivalent.

Now, lets see how the eduExercise class is defined in the
Ftp://~www ekengren.com/ tdf / schemas/ eduschena] Well, we create a node that has the 1D of
Exercise by creating a description-element with the ID-attribute, but without the about-attribute.
In effect, this is not a description about a resource, rather it is a resource in itself with the
specified ID. We declare this resource to be of the class rdfs:Class. The rdfs:Class-resource, is
defined as part of the RDF Schema machinery. Every RDF data model includes this resource
(and a few other resources) implicitly.

The edu:Exercise node in Figure 16 is defined in eduschema as:

<rdf:Description ID="Exercise”>

<rdf:type resource - [HLLD://www w3 Org/IR/WD-TOI-SChemarClass 7}
</rdf:Description>

Or, using the more compact form, with rdfs defined as the RDF Schema namespace:

<rdfs:Class ID="Exercise”/>

Properties are declared in a similar way, using the built-in rdf:Property-resource. The
recommended convention is to use the first letter capitalized in class names and non-capitalized

in property names.

22

http://xmlns:rdf="http://www.w3.org/rdf-syntax"
http://xmlns:dc="http://purl.com/dc/elements/l.O"
http://xmlns:edu="http;//www.ekengren.com/rdf/schemas/eduschema"
http://abouc="http://www.ekengren.com/rdf/math_exercise">
http://"htcp://www.ekengren.com/rdf/schemas/eduschema#Exercise"
http://xmlns:rdf="http://www.w3.org/rdf-syntax"
http://xmlns:dc="http://purl.com/dc/elements/l.O"
http://xmlns:edu="http://www.ekengren.com/rdf/schemas/eduschema"
http://about="http://www.ekengren.com/rdf/mach_exercise">
http://www-.ekengren.comJrdUschemas/eduschema.
http://"http://www.w3.org/TR/WD-rdf-schema#Class"/>

<rdf:Property ID="title”/>

There are a few “Core Classes”, “Core Properties” and “Core Constraints” defined in the
RDF Schema specification [RDFSCH]. There are many scenarios where these simple
mechanisms are not adequate; a more general schema mapping mechanism for RDF may be
developed in future W3C activity [RDFSCH].

4.3.2. CONSTRAINTS

We can place constraints on properties by declaring in what dorain a particular property is
relevant, ie. on what dass of resources it can be used. We can also constrain the range of a
property by declaring the class allowed for the resource values for the property.

RDF Schema focuses on properties rather than classes. This means that the RDF Schema
Specification currently does mot introduce a way of specifying what properties are required to
describe an instance of a particular class. We cannot declare that an instance of the dass
edu:Exercise must include the properties #itle and aeaor. Also, we cannot in any way prevent
people that use adabena from describing instances of edu:Exercise with unknown properties
from other schemas. The advantages and disadvantages of this are discussed further in section
4.4 where DCD (Document Content Description) is introduced.

A more complete schema for our math exercise looks like this:

23

The content of this resource.

This may be a literal resource

or another ContentObject or a
collection of reources.

| ContentObject

The prerequis
required from

rdfs:subClassOf ts:domain A / users of thi
rdfs:comment rdfs:comment resource.

rdf:type M "
Exercise) e Image) o -
prerequisites

rdfs:subClassOf

\) content
\ /
\

| rdftype v rdf:type /
\\ @/ ’/ rdf:type rdf:type
\ /
‘\ rdf:}ype
gl]
rdf'type it / rdf:Property
\ Instance R !
\ / 'I;df.:ty‘pe' i N
\ T s, .
\!
\ pigean.jpg
| math_exercise
rdf:object

rdf:subject

rdf:type
rdf._1— description01 \\/

Figure 17 This is part of the scherm dgfinition for eduschema. Note that the schewa is pant of the
RDF deta model for the math exercise. We bave defined Exercise ardlmage as subclasses of a
ContentObiject ciass and we baveconstrained the content property so that it can only be used on
Instances of ContentObject (or subdasses thereof). The dotted live is the division between schena
and nstance.

We have used the eduanient-property to describe our math exercise. Apparently, our math
exercise contains an instance of the class ed«fngge. The aduariarni-property has been constrained
to be used only on instances of ConentObjact (or subclasses of CaaitObjact). This constraint is
expressed with the #df:damnain property.

A problem with the current RDF Schema specification is that only one rgénoge statement
may be given to a property. In this case we would like the eduriz statements to have a value
that is either an instance of the class ConteObject or a string. In the RDF Schema specification,
strings are instances of the dass #ff: Literdl which is implicitly declared by the RDF Schema
machinery. If we constrain edwarient to have only ContentObject values then the following
construct is invalid:

24

edu:ContentObject

F Dost ki
rdfs:subClasrdfs:subClassOf eciar Dnsiagonaid

edu:Text /
dc creator Alexey Fyodorovitch Karamazov was the third

rdf:type

HL contem(remembered among us owing to his gloomy and
edu:content tragic death...

Figure 18 Irualid if the echicontertt property’s range is ContertObject.

A workaround for this problem is to give a “human readable” comment in the schema
instead of a machine understandable range-constraint: “aduarient is the covdent of this resowce. The
avierit may be a literal resovae or avotber CortentObject or a collection of resaures.”

4.3.3. VOCABULARIES VS. SCHEMAS

There is some confusion as to what the difference is between vocabularies and schemas.
[RDFSCH] states:

“The phrase RDF vocabulary is used here to refer to those resources which evolve over time;
RDF Schema is used to denote those resources which constitute the particular (unchanging)
versions of an RDF vocabulary at any point of time. Thus we might talk about the evolution of
the Dublin Core vocabulary. Each version of the Dublin Core vaz#tudary would be a different
RDF schena, and would have a corresponding RDF model and concrete syntactic representation.”

4.4. DOCUMENT CONTENT DESCRIPTION - DCD

DCD was submitted to the World Wide Web Consortium (W3C) by IBM and Microsoft
[DCD]. The document proposes a structural schema facility for specifying rules covering the
structure and content of XML documents. As we understand the specification [DCD], DCD is a
grammar for expressing RDF vocabularies, rather than an RDF vocabulary in itself. This means
that we would refer to a DCD document with our namespace declarations in our RDF
documents (section 3.3), ie. it’s schema declarations.

DCD is an interesting altemnative to the RDF Schena specification [RDFSCH]. Here is a
comparison of features:

25

rdf: type son of Fyodor Pavlovitch Karamazov, a landowner
well known in our district in his own day, and still

RDF Schema DCD

Approach Property based ~ Class based
Syntax RDF XML
Constraints on classes No Yes
Constrains on properties ~ Yes No
Primitive data types No? Yesl0

Table 3: Comparison of features: RDF Schema vs. DCD.

A Document Content Description (DCD) is a set of properties used to constrain the types of
clements and names of attributes that may appear in an XML document, the contents of the
elements, and the values of the attributes. If the XML document follows the RDF model, DCD
puts constraints on allowed and required statements in the declared classes.

Here is an example of a DCD schema:

<DCD>
<ElementDef Type="content”/>

<ElementDef Type="ContentObject” Model="Elements” Content="Open®>
<Description>This is the ContentObject class</Description>
<Group RDF:0rder="Bag”>
<Group Occurs="Required”>
<Element>dc:title</Element>
<Element>dc:creator</Element>
<Element>dc:date</Element>
</Group>
<Group Occurs="0Optional”>
<Element>content</Element>
</Group>
</Group>
</ElementDef>

<ElementDef Type="Exercise” Model="Elements” Content="Open”>
<Description>This is the Exercise class. It inherits from
ContentOkject</Description>
<Extends Type="ContentObject”/>
</ElementDef>
</DCD>

The above schema declares a ConiertObjct dlass which should be described by the required
elements detitle, decraator and dbdite (defined in some external schema). The content object can be
described with the optional coue# element (decdlared in this schema). The attribute
Covdent="Open” declares that instances of this class can also be described by other elements,
defined in this or an external schema.

As Table 3 suggests, RDF Schema and DCD are quite different. RDF Schemas are expressed
using RDF Model and Syntax and are close to RDF “in spirit”, while DCDs use their own XML
syntax and are much dloser in spirit to classical databases. The reasons for this conclusion are:

1. RDF Schema focuses on properties. You dedlare a woadbudary (schema) which is a collection
of properties and constraints on those properties. It’s possible to constrain the instances

9 RDF Schema may be extended in the future to support data types.

10 Examples of DCD data types are: siring raamber, dale and time.

26

of which classes a property may be used. It is also possible to say that a property must
have a value that is an instance of a certain class. Often no such constraints are given,
because one wants the vocabulary to be used on all kinds of resources. One example of
such a vocabulary is the Dublin Core schema. In RDF Schema there is (currently) no
way to express that a certain class st or shoukd be described by a certain property. Given
the decentralized nature of the web, it wasn't considered feasible to restrict a class to be
described in a certain way or with certain properties. The RDF Schema doesn’t contain
any data types but may be extended to support them.

2. In DCD the focus is on classes. We can say that a class mu#& be described by certain
properties (elements in the DCD temminology). We can even put a constraint
Content="Closad” which means that the class can @y be described by the supplied
properties. We can also put constraints on the values of properties. DCD also defines
data types.

So which schema definition language should we use, RDF Schema or DCD? In the math
exercise case study we chose RDF Schema. The reasons for this can be illustrated by an example:

With RDF Schema we can subclass our “MathBook” class from a well known “Book” class
from some widely used schema. Let’s say for example that the online bookstore Amazon
provides such a schema. By subclassing the Book class from the Amazon schema we declare that
we are selling a book that complies with Amazon'’s definition of what a book is. This does not
mean that we have to use properties from the Amazon schema to describe our book (or math
book) resources. Instead we may want to use the Dublin Core schema and a few properties that
we declare in our own schema (edu). It is impossible for the creator of the Amazon schema to
perceive every possible property that users on the web will want to describe the book class with.

The next section (4.5) describes a scenario where DCD is useful, i.e. when we use RDF to
transport data between servers. Then we would like to validate the RDF descriptions so that they
contain all data the receiving server requires and that the data are of the required data types.

DCD is likely to become widely used if IBM and Microsoft continue to back them. DCD is
already implemented in Microsoft Intemnet Explorer 5.

4.5. RDF AS MEANS OF TRANSPORT

As we add more resources to the edu:content-bag of our math exercise, such as an instance
of the class Text, an instance of Image and an instance of Solution we may start to realize that
this is no longer a description of a math exercise defined in math_exercise. The RDF document is
the math exercise! This highlights the fact that RDF is a data model general enough to be used
for other things than just describing resources. We can use RDF as the trewport format of math
exercises.

As the RDF document is in fact our math exercise, we can remove the “about”-attribute
from the rdf:Description-element and add an ID that identifies this new math exercise resource.

RDF can be used to transport math exercises or books containing math exercises between
different servers. A math exercise broker could import math exercises expressed in RDF from
many different servers. Of course, the market for math exercises may not be big enough to make
this commercially viable.

27

RDF Data Sources

3

RDF data

Math
Problem
Broker

Teacher locking for m:

'— RDF data

RDF data

Figure 19: The RDF Data sources are providers of math exercises. They are capable of delivering
the math exercises i RDF acoonding to some agread upon schema. The Math Exercise Broker
recds the RDF dala from the different sources and provides an interface to the Teacher looking
Jrommath exercises.

Figure 19 highlights why RDF is interesting to a system like the Multimedia Broker
[MMBROK]. The Multimedia broker would benefit from being able to present its products in a
format that is recognized by external systems (for example other Multimedia Brokers).

4.6. SUMMARY

We have now completed the RDF math exercise example. We have modeled a math exercise
using the RDF data model and provided a schema using the RDF Schema specification. We have
showed that RDF is capable of more than just describing resources. RDF can be used for
storage, transport and retrieval of any data.

When modeling the math exercise we used the dcrelation property to indicate relations
between different resources. The math exercise is a part of a larger context, the math book. The
exercise in tum consists of a number of resources such as texts and images.

In constructing a schema for the math exercise we briefly discussed the benefits of RDF
Schema over other schema definition models such as DCD. We also noted a problem with
allowing only one rdfs:range property in the schema definition of a property.

We conclude this chapter with examples of RDF applications. An RDF application is a

vocabulary and additional semantics that form a layer on top of RDF. Examples of RDF
applications are:

1. PICS - Platform for Intemet Content Selection [PICS] which we discussed in chapter 2.
2. P3P - Platform for Privacy Preferences [P3P]. The P3P specification will enable Web sites to
express their privacy practices and users to exercise preferences over those practices. P3P

products will allow users to be informed of site practices, to delegate decisions to their
computer when possible, and allow users to tailor their relationship to specific sites.

28

3. DSig — Digital Signature Initiative [DSIG]. The W3C Digital Signature Working Group
developed a standard format for making digitally-signed, machine-readable assertions about a
particular information resource. More generally, it is the goal of the DSig project to provide a
mechanism to make the statement: signer believes statement about information resource.

PICS P3P DSig

RDF

XML

Figure 20: RDF applications are a layer on top of RDF

29

5. DESIGN AND IMPLEMENTATION

In this section we will discuss how RDF was implemented in our project. Let’s recapture the
objective of the implementation part of this project from the introduction in section 0:

“We want to describe the products and services so outside metadata consumers can
discover the products and relationships between products. We also want to be able to
describe and export products and services to other Multimedia Broker systems or similar
systems from other vendors”

We have already discussed the how the products in the Multimedia Broker can be modeled
with the RDF data model. We have also defined a simple schema suitable for the educational
product case in the Multimedia Broker. A complete description of the math exercise model and
schema can be found in the next section.

RDF was implemented both on the Multimedia Broker and in a simple client, which we call
the Rd4fClient. Details about the server side implementation, ie. the implementation on the
Multimedia Broker can be found in section 5.2. The RdfClient is an RDF parser capable of
showing RDF descriptions of all kinds of resources, ie. the client is not tied to any particular
application or schema. A user can edit the RDF descriptions using a simple graphical user
interface. Details about the client side implementation, the RdfClient, can be found in section 5.3.
These sections assume some knowledge about web servers and programming techniques.

5.1. RDF DATA MODEL AND SCHEMA

The interested reader should have a pretty good understanding of RDF after reading the
previous chapters and is probably eager to see the RDF data model of math exercise instances
actually generated by the Multimedia Broker. Let’s look a math exercise instance and the edu
schema implementation before we dive into the server-side implementation in section 5.2:

30

edu:MathBook "‘rdf'typei{

oY
‘/ \Jalhibmk IsPartOf

dc:identity i A

cqitype
edu:content -
| %
-\//_edu:Exercise
.\ R
dc:relation rdfstype Pigeon and Email
\
\
/ - detite ¥ Dag Ekengren 1928-11-13
{ http:4/127.0.0.1/VNDatabaser/Liber/ de:creator ——dcq:created
I’d

" VNContentServer.asp?INFOPROD_ID= de:date —p
\ 19&Prodid=3 subject i

"T» Fractions and Potency
&:Zp blisher dc:description

edu:level -
. - gduZDrequisites dc:language Prerequisites: The
Middle) i | four ways of counting.
edu:category “‘ * de:rights \a . Category:Problem
The four ways of coum\ng ucational Products Inc. exercise training
T - edu:content .‘ Difficulty level: Middle
/" htpA27.0.0/cther | Problem exercise training |‘ \E en
exercises) \\
o CopyMant 1998,
Educational

Products Inc. All
rights reserved.

raf: 1_“/ ity edu:lmage
plgecn ipg A \—/

rdfa"dfz

rdf type" edu:Text
™ dc creator
John Doe %-gc: creaior / L — Charles

s - Dickens
tent
<other math rdf: type/ 2au; °°" e _y 1873-11-23
problems > f i deq:created
(RSP iRE edu:Solution i date A ‘A small a
X P \ pigeon flies |
v across the

1873-11-23 %=
dogicreated /" \f The answer to this Mexican
\ / interesting exercise is 23 border with
e

Figure 21: A math exercise instance gererated by the Multimedia Broker.

The math exercise uses the Dublin Core RDF schema and the following ed+RDF schema:

31

edu:Exercise

rdf.Class
% zéfs:subCIassOf /—\

rdf:type /@rdfszsubClassOf edu::MathBook
|
rdfs:subClassOf

edu:Content-

Object i =
rdfs:subClassOf edu:image |
rdfs:domain 4/
:subCIa;sOf
:subClassOf el
N edu:Text
rdfs:domain
rdfs:domain rdfs:domain
f edu:Solution

= |

\

edu:prerequisites

\ \) _
/

edu:content edu:category f

\ ﬁ <) /

rdf:type rdf:type rdﬂ/ype rdf:type

rdf:Property

Figure 22: RDF schema for the edu namespace

5.2. SERVER SIDE - MULTIMEDIA BROKER

The server-side implementation was simplified by the fact that the Multimedia Broker is a
flexible tool when it comes to choosing how products are presented. The system separales
content from presentation. This means that the same content may be displayed in several
different ways, depending on whom the user is

In the broker system, there are Contert Prodiucts and Bafowmation Prodhacts. The Content Products
are products in a traditional way. They can be books, math exercises, or things like cars, ships or
space stations. The Content Products are defined in the Multimedia Broker metadata database.
The products can be presented in many different ways and the combination of 1 a product or a
collection of products and 2 the presentation of that product or collection of products makes an
Information Prodhact. The presentation of a product is determined by a Presuation Modd, An
information product can be the HTML presentation of a book. Another Information Product
would be the RDF description of the same book. A collection of products, for example the result
of a database query, with a presentation model is another Information Product.

The Content Products and Information Products are defined in a metadata database.

52

Math Exercise Book Video clip

@

Content
Products

| \\

HTML list of a RDF

p;?s;e;t:;llzn number of description of
btk books that book

match a user's
search query

Processing

Information
Products

Figure 23: Schematic drawing showing the Multimedia Brokers product structure. Each of the
Content Produicts above can be presented, in any mamber of ways, called Biformation Prodhicts

The approach in this product is to implement RDF in the Multimedia Broker server by
creating an Information Product that has a Presentation Model that creates RDF output. The
generation of RDF is then completely integrated with the rest of the system: RDF generation
doesn't differ from generating HTML, VRML or any other output format. That's one of the
advantages the Broker has over a traditional web server. Fortunately it simplifies server-side

implementation in this project.

The process from client request to a retumed RDF document is shown in the following

(much simplified) flow chart:

Client
Reguest

Database
Query

RDF document

—Stream

Conversion
to internal XML
format

Stream

Figure 24: The process from dlient request to an RDF document describing a product.

The steps of implementing RDF on the Broker are:

XSL processor |<7File4 AL anRsE

Create a database query that returns all the data needed for the product being described. The
Multimedia Broker uses CQL (Conceptual Query Language) which makes creating the query

particulardy straightforward.

Create an Information Product by assodiating the query with a Presentation Model. The
Presentation Model is implemented with an XML Stylesheet (XSL). Readers that aren’t familiar

with XSL may want to read the section on XSL in 0.

33

5.2.1. THE XSL PROCESSOR

The Multimedia Broker uses an internal XML format to exchange information between the
server’s different components. The result of our database query is wrapped up in an XML
document in a format intemal to the Broker. If we made the proper query, this XML document
contains all the information needed for the RDF description of the product.

We simply feed that XML document to the XSL processor together with a stylesheet, that
transforms the XML document into an RDF document!!. The XML document’s attributes,
which are specific to the Multimedia Broker, are mapped to well-known schemas (most notably
the Dublin Core schemz). The XSL processor lets us package and rearrange the information in a
way that creates output that is valid RDF descriptions of our products.

A separate XSL stylesheet for conversion to RDF has to be made for each product in the
system. So, in our educational products case, we made one stylesheet for the math exercises and
another for the math books. The schema is in effect hardwired into the XSL stylesheet scripts.
An area of future improvement is to allow the schemas to be defined in the metadata database.
The XSL stylesheet would then be generated from the metadata database automatically.

Here is part of an XML to RDF stylesheet for Microsoft’s XSL processor:

<xsl>

<rule>

<root/>

<! [CDATA[

hello

11>)

<?xml version="1.0"?>
<rdf>

<children/>

</edE>

</rule>

<rule>
<target-element type="CATTRIBUTE">
<attribute name="ID" value="190"/>
</target-element>
<select-elements>
<target-element type="A"/>
</select-elements>
</rule>

<rule>
<target-element type="A"/>
<! [CDATA[

<edu:Exercise ID="]]><eval>getAttribute(’HREF’)</eval><! [CDATA[">
i

</rule>

<rule>
<target-element type="ROW"/>

<! [CDATA[
<!-- Instance of class edu:Exercise -->]]>

<select-elements>

<target-element type="CATTRIBUTE">
<attribute name="ID" value="190"/>
</target-element>

</select-elements>

<! [CDATA[<de:Title>]]>

<select-elements>

<target-element type="CATTRIBUTE">
<attribute name="ID" value="199"/>
</target-element>

11 Please note that RDF documents are indeed XML documents, with the added requirement that they follow the W3C
RDF Model and Syntax specification.

34

</gelect-elements>
<! [CDATA[</dc:Title>
11>

<! [CDATA[<dc:Creator>]]>

<select-elemencss>

<target-element type="CATTRIBUTE">
<attribute name=*"ID" value="106"/>

</targec-element>

</select-elements>

<! [CDATA[<"</dc:Creator>

11>

<! [CDATA[</edu:Exercises
11>
</rule>

<rule»

<target-element type="RESULT"/>
<children/>

</rule>

gem-element type="QUERY"/>
ldren/>

</%sl>

A more complete XML to RDF stylesheet and an example of the intemal XML format in the
Multimedia Broker can be found in Appendix B.

5.2.2. OTHER SERVER IMPLEMENTATIONS

RDF descriptions can be created on the server quite easily even if you don't have access to
tools as powerful as the Multimedia Broker. This section gives examples of such
implementations.

One way to generate RDF is to use server-side scripting, Server-side scripting is available for

most web servers, including the widely used Microsoft's 115412 and Apache?3. The scripts are
mostly used to generate HTML today. The scripts can however generate any text-based format.

We will now show a script that opens a database connection and packages to information
directly into RDF statements.

The sample script is written in VBScript'4. The shaded parts are script code executed by the
web server. The white parts are retumed to the client as text.

<%ELANGUAGE="VBSCRIPT"%> 1
<% Option Explicit %>

<% ' This script generates RDF metadata %>

<%

Dim ProdId

Dim Conn

Dim RS

Dim sgl

Set Precdld = Reguest.QueryString("ProdId")

12 1154 — Microsoft Internet Information Server version 4. Visit http://www.microsoft.com for details,
13 Apache — available to several platforms, including Linux and Windows NT. Visit htp://www.apache org for details.

14 VBScript — Visual Basic Scripting Edition, a Microsoft server scripting technology. Similar scripts can be written in
JavaScript and other scripting languages.

35

Set Conn = Server.CreateObject ("ADODB.Connection")

Conn.Open "EduData®

sgl = "select data.Titel, data.Undertitel, Best_nr, Media, Forfattare, Texter,
Skolform, Program, ProgramKod, ProgramTyp, Amne, Kurs, mgrupp.Typ from data,
texter2, mgrupp where data.Prodld=’'"&ProdId&"’ and texter2.Prodld='"&ProdId&"' and
mgrupp.ProdId='"&ProdId&"'"

Set RS = Conn.Execute{sgl)

¥><?xml version="1.0" encoding="I1S0-8859-1"?>

<?xml:namespace ns= T . el T
<?xml:namespace ns= [LCLD://PUrl.org/mecacaca
<rdf :RDF>

prefix="rdf" >
prefix="dc" ?>

<rdf:Description bagID="desc_<%=ProdId%>" about="<%=ProdId%>">
<dc:title><%=RS("Titel")%></dc:title>
<edu:bestNr><%=RS ("Best_nr") %></edu:bestNr>
<dc:creator><%=RS("Forfattare")$></dc:creators
<dc:publisher>Educational Products Inc.</dc:publishers
<dc:Description><%=RS("Texter")%></dc:Description>

<% If Len{RS("Media")) > 0 Then

%><dc: format><%=RS("Media") %$><dc: format>

<% End If%></rdf:Description>

<rdf:Description about="#desc_<%=ProdId%>">
<dc:creator>Multimedia Broker</dc:creators
<dc:date><%=now¥></dc:date>
</rdf:Description>

</rdf :RDF>
<% RS.Close %>
<% Conn.Close %>

This simple script doesn’t handle things like missing values in the database. The script is run
by the web server when a web browser accesses it via a URL. The particular instance is identified
with Prodld, a product id.

[ICCE 7 7WWw . EKEIgrell. Com/ 0L/ LeSLSCript .aspProdla="110021

Here is an example of an instance generated by the script:

<?xml version="1.0" encoding="ISO-8855-1"72>

<?xml :namespace ns= [NCLD://WWW.W3.0rG/SChenas/Tadr—Scnena] prefix="rdf" 2>
<?xml:namespace ns= D://purl.org/metadata/dublin_core prefix="gdc" P>

<rdf:RDF>
<rdf:Description bagID="desc_T10023* about="T10023">

<de:title>Macbeth</dc:title>

<edu:bestNr>231231</edu:bestNr>

<dc:creator>William Shakespeare</dc:creators>

<dc:publisher>Educational Products Inc.</dc:publishers>

<dc:Description>A simplified version of Macbeth which includes all speeches but
the longer ones have been abridged</dc:Description>

<dc: format>paperback<dc: format>
</rdf:Description>

<rdf:Description about="#desc_T10023">
<dc:creator>Multimedia Broker</dc:creators
<dc:date>1998-12-08</dc:date>

</rdf:Description>
</rdf:RDF>

As you can see, the script has generated an RDF description of a book with the title
“Macbeth”. The script also generates a description for the description.

5.3. CLIENT SIDE - THE RDF CLIENT

As part of the project we implemented a client application for reading and parsing RDF
documents. The RdfClient is very useful for prototyping new schemas and for checking syntax in
RDF documents. It is also useful as a learning tool for the RDF data model.

The requirements are that the RdfClient:

e Is generic enough to show RDF descriptions of all kinds of resources.Has an €asy to use
graphical user interface to browse the RDF document

36

http://'http://www.w3.org/schemas/rdf-schema''
http://"http://purl.org/metadata/dublin_core''
http://www.ekengren.com/rdf/testscript.asp?Prodld=TIOD23
http://'http://www.w3.org/schemas/rdf-schema'
http://'http://purl.org/metadata/dublin_core"

e Shows the RDF document in a way that closely resembles the RDF data model
e Allows the user to search the RDF document

e Allows the user to edit the RDF document

® Provides some RDF schema support

® Runs in a Browser on a wide range of hardware/software configurations

To meet the last design goal we decided to write the RdfClient in Java 2. This allows the
dient to run in browsers or with the Sun Java plug-in. The graphical user interface of the client
uses the Java Foundation Classes from Sun, which are included in the Java 2 platform?s.
Specifically we wanted to use the “Tree” and “Table” graphical components and the menu
components, as shown in the following section. RdfClient runs both as an applet and as a
standalone application.

The dient can be mun from [Atip://www.ekengren.com/rdi/ chient.himll Follow the guided
tour in the next section by pointing an I[E4 web browser to this URL.

5.3.1. RDFCLIENT FUNCTIONALITY — A GUIDED TOUR

Loading RDF doasvents

Let’s start the guided tour by loading an RDF document. RDF documents can be loaded into
the dient either from a local file or via HTTP from an URL. A local file is loaded by selecting
Open in the Filemerus:

15 The Java 2 platform is also known as JDK 1.2. Sun changed the name when the product went from beta version to
release.

37

http://wwvv.ekengren.com/rdf/client.html.

:RdfClient v 03

Figure 25: Open File in the RdfClient

Other features in the File Menu are Save and Print. Print enables the user to print out the
current RDF document serialized to XML to standard output. Java Applets are not permitted to
access local files. If you load the RdfClient as a Java Applet, select Open URL and type

Rtip://www.ckengren.comy/rdl/mat]} exercise.xml.

Browsing an RDF doaurent

One of the significant features in RdfClient is being able to browse any RDF document to
demonstrate various RDF features. We load our famous math exercise instance into the
RdfClient. This is how it turns out:

38

http://www.ekengren.com/rdf/math

EZRdiClient v 0.3

4 RDF Document S
: ‘lialabgceiadulivh hiz resource is aninstance ofthe Class
[Title eduExercise’
™y authoricreator he 'edu:Exercise’is a subclass of
7 Date #FContentOhject!

| Relation

Identification
Difficulty Level

Category e igeon and Emai
D Subject uthorCreator Dag Ekengren

3

Middle

Exercise exercise traini.
Fractions and Potency
The four ways of counti.

D Frerequisites
@ [Cantent

Figure 26: The RdfClient in all its glory.

The left pane shows the RDF document. It is displayed as a TieViaw. The children nodes
can be expanded and collapsed by clicking on the &udlets next to the nodes. The TableViavto the
right shows the values of the properties for this particular instance. The instance can be edited by
the user and the changes are propagated to the intemal RDF data model.

The schema information window tells us that we are viewing an instance of the class
aiu: Exercise, which is a subclass of the dass ComerntObject. The math exercise schema has been
described in section 4.3. The property names are looked up in the corresponding RDF Schemas.
That's why we see Title instead of d:#ifle in the property column of the Table in Figure 26.

By dlicking on the Comast property node in the TreeViaw we can expand it to reveal its
contents:

39

L UITfIEUILy Lo

[category

[subject

[Prerequisites
® [Content

@ [rdfBag

@ [{edu:lmage}

O [{eduText)
o du:Salution

Figure 27: The value of the ed.coviient property is an rdf:Bag, whidh contains instances of the classes
edu:Fmage, edu: Text and edhu: Solution

Let’s click on the bullet next to the node of the class a#«Text to reveal the statements inside. We
can now see that the e« Text-instance included in this math exercise has a description with three
statements. One of the statements uses the eZ«aruent-property. The value of this property is the
actual exercise text. We have also given the exercise text davamior and dadie statements which
may or may not match the corresponding statements about the math exercise. This demonstrates
the various levels of granularity we can achieve in the descriptions.

| @ CJcontent

| @ [1rdfBag AuthorCreator Dag Ekengren
: : Date 1888-11-17

E

& [l {mdlms

Content Asmall pigeon flies a.

Eﬁ Author/Creatar

E Date
[y content
© [{edusoution;

Figure 28: The Bag which was the talue of the edu:content property contains three objects. We bave
dicked on the object of class edu: Text. This text object could be a part of other math exercises as
uell,

Editing an RDF document

The RDF client gives the user the ability to edit any RDF document. This functionality can
be used as a basis for creating an RDF metadata authoring tool. The newly edited value is
immediately stored in the intemal RDF data model.

40

® [rdfBag
o dulmage}
E}; AuthoriCreator
[Date

[y content

ag Eke
11993-11-17
Content A osermall pigean flies across. .

Figure 29: The dc:cragior property bas been selected for editing. The user finishes editing by pressing
retum. The change is inmmediately propagated to the internal RDF daia model,

If we change the deomiior to “Dag Ekenben”, the change can be checked in RDF data model
by viewing the source as shown in the next h.
paragrap

View Source

In web browsers you can select the menu item View Sawrce o see the HTML-markup for the
currently loaded web page. In RdfClient you can select Soure from the Viewmenu. This shows
the XML serialization of the currently loaded RDF data model in a separate window. You can
also right-click on any node and select View Saurce fiom berein the popup menu that appears:

@ Content
@ rdf:Ban

Figure 30: When the user right-clicks on a viode a popup window appenis. Selecting “View Source
Jfrom bere” gpens awindowwith the XM L serialization of the curvent node and all iis children.

In our example, we changed the value of the dearaior property in our instance of edeText to
“Dag Ekenben”. As we might expect, the change is properly propagated to the RDF data model:

41

&

=pdu Text do:creator="Dag Ekenhen” do:date="1998-11-17" edu:cont

Figure 31: The vakie of the dccredtor property bas been changed to “Dag Ekenben”. Cool stuff.

Schermna Support

The RdfClient hyommation window shows the information from the RDF schemas associated
with each property or class. This information is provided to help the user interpret or edit the
instance values:

s

Y Title
[Author/Creater
D] Date

D Felation

™Y Part O

c.creator
he person or organization primarily
spaonsible for creating the intellectual conten
‘ofthe resource. For example, authors inthe
‘case ofwritten documents, arists,

- Froperty

Figure 32: The user bas selected the dccreator property. The “Information” window shows the definition

5.3.2.

INSIDE RDFCLIENT

of de.craator from the Dublin Core schama. The fitll text can be viewed by ustng the scrollbar.

First a short summary for those who already know a lot about XML and Java. In the
following sections we will describe the process in more detail for the rest of us.

Sumwvary. When RdfClient reads an RDF document it is first processed as an XML document.
The IBM XMLforJava [XML4]] parser does this and creates a DOM!6 tree. This tree is processed
by the RDF parser, also from IBM [RDF4XML]. The RDF parser builds the RDF data model in
memory with Java objects. The RDF parsers data objects are wrapped up in dlasses that comply

16 DOM — Document Object Model. A W3C API for accessing data from a tree data structure [DOM].

42

with the JFC'7 MutableTreeNode model. This means that the RDF dama model is directly
browsable and modifiable by the JFC Tree GUI component.

Let’s take a simple example of an RDF document and see how it is handled step by step by
RelfClient. Figure 35 summarizes this process. Readers unfamiliar with XML maywant to read 0.
1. The XML parser reads the RDF document.

In this first step the RDF document is read in the same way the XML parser would read any
XML document. This RDF document is yet another flavor of our now famous math exercise:

<7xml version=*1.
<rdf :RDF xmlng:rd

Le>rlge

<edu:content>
<rdf:Bag>

<rdf:li>

<edu:Text edu:content=*A small pigeon flies across the mexican
border with a floppydisk” dc:creator="Dag Ekengren”/>
=/xaf:1i>
</rdf:Bag>
</edu:content>
</edu:Exercise>
</rdf :RDF>

The XML parser reads this in the same way it reads any XML document. It doesn't recognize

any RDF-specific tags. The XML parser builds a data structure while parsing the document. This
strictly hierarchical data structure is a DOM (Document Object ModelD) tree:

L Stuchirs =~
=-®% ADF.RDF
| = (21 EDU:EXERCISE
~ @ ABOUT
-y DC:TITLE
=] EDU:CONTENT
=] RDF:BAG
=] RDFU
EREREEDU-TEXT
- @ EDU:CONTENT
©® DC.CREATOR

Bz

>
&

p)
w

Figure 33: This the DOM of our RDF doament. Tbempbdacum.um read by Microsoft's
XML notepad. The XML notgbad doesn’t know about RDF and deesnt treat the RDF
doaonent arry differantly fiom any other XML doaonent.

This tree can be navigated and manipulated by a standard API'®# proposed by the W3C
[DOM]. This navigation and manipulation is the RDF parser’s job.

7 JFC — Java Foundation Classes. GUI component classes downloadable from Sun Microsystem's web server
http://www.sun.com. JFC is included in Java SDK 1.2 from Sun.

1% API — Application Programmer’s Interface.

43

http://~lnS'�c=�http://purl.org/�c/elements/l.0�
http://about-�http://w~.e~eng=en.com/rdf/ma~~_cxercise.>

2. The RDF parser traverses the DOM tree

The RDF Parser has knowledge about the RDF-specific nodes and their semantics. It builds
the RDF data model in memory by traversing and parsing the DOM tree. The RDFforJava
parser from IBM builds this data model with Java objects of various classes.

The class hierarchy used in the RDF parser is described in Appendix C. For our sample
document the following RDF data model is built:

RDFDescription

RDFProperty

RDFProperty RDFBag

RDFDescription

—

RDFProperty

String

RDFProperty String >

Figure 34: The RDF data model built from our sample RDF document. The boxes are Java object
instances of the named classes. The RDF doament’s root node is of class RDF. It conlains one
RDFDescription instance (describing math_exercise). The RDFDescription instance is parent Jor
tuo RDFProperty instances. The first instance (coresponding to dctitle) bas a string vale. The
other property insiance (edu.content) bas an RDF bag as value.

One of the design goals of RdfClient was to provide a Graphical User Interface that lets user
browse and edit RDF documents. The graphical representation of the RDF data model can be
done in many ways. The representation closest to the data model itself would be a GUI with
nodes and arcs. The disadvantage of this type of GUI is that layout and navigation can become
quite complex.

A tree view was chosen for the following reasons:

e Ease of implementation.

e Most users are familiar with how to navigate the tree from previous use of tools such as
the Microsoft Windows Explorer.

e Ability to use standard Java tree view classes.

4

3. The JFC MultableTreeNode Classes wvap the RDF data widl classes

To make the RDF data model built by the RDF parser editable by the JFC Tree component,
each object in the RDF data model is wrapped up in a Java object of a class that implements the
MuiableTreeNodke interface. The RdfClient software accomplishes this task.

The RdfClient has an equivalent MutableTreeNode class for each of the RDF data model
classes presented in Appendix C. The user can manipulate each MutableTreeNode by using the
GUI. The changes are actually made directly to the RDF data model nodes acting as
MutableTreeNodes. There is no data redundancy and therefor no risk for inconsistencies.

The figure below sums up the data flow in RdfClent when loading an RDF document. When
a document is edited and saved, the data flows in the opposite direction.

RDF Data Model) RdfCient JFC tree

RDF Parser

XML Dom

XML Parser

XML document

Figure 35: The tnteral processing dove i the RdfClient

The sample document looks like this in the TreeView of RdfClient:

45

] Description of http:mmw.ekengren.cnjrhrru_‘:

[y AuthorCreator

i

[Title §

@ Content 2
® [] rdfBag :

@ uText) 3

[y content i

Figure 36: Our sample RDF document bas been wiapped in MutableTraeNodes and then banded to
the JFC Tree Component.

4. Descriptions are wrapped in JFC' TableModel

When the user clicks on a description object i the Tree component, the RDF description is wiapped
in a Jann object that implements the TableModel interfoice. This allaws the RDF description to be
directly edited by the JFC Table Component. Plaase rgfer to

Figure 29 where the TableView is shown “in action”.

5. RDF Schemas

One of the design goals of RdfCliet was to provide some support for the RDF Schema
proposition [RDFSCH]. When RdfClient loads an RDF document it looks at the namespaces
declared in the beginning of the document. Each schema is loaded from the URLs provided in
the declarations. The XML and RDF parser parses the schemas (which are themselves RDF
documents) independently from each other and from the main RDF document. They are used
for schema lookups only and are therefor not shown to the user in the Tree component.

When the user clicks on a node in the TreeView (which represents the RDF document and
not the associated schemas), the RdfCliew searches the schema associated with that node. It
displays any schema information it can find about the node in the Irgéwmation frame. The Rdftlient
currently recognizes the following parts of RDF Schema [RDFSCHI:

e The Class of a resource

e If that class is a Subdass of another dlass.

e Commenis about properties and classes

e Labels for properties

e The Rangeand Domean for properties.

46

The range of a property is the allowed dlass of the RDF value of that property. The domain
is the class of the objects that the property can be applied to.

5.3.3. DIFFERENT VIEWS OF DATA

RdfClient presents the data in a way that is very close to the XML serialization of the RDF
data model. The same RDF data can be displayed in any way the application designer wants. The
data can also be presented in different ways and with different levels of detail depending anwho
the user is.

In our RDF example with math exercises we could present the teacher with a full view of the
exercises and their solutions. The teacher picks the exercises he finds interesting and puts
together a collection of exercises for the semester.

When the students are presented with the math exercises they see a friendly user interface
with less information (and probably with the solutions removed).

5.3.4. SUMMARY

In this chapter we have showed the complete RDF data model and Schema for our case
study math exercise. We have showed how RDF descriptions should be implemented on the
Multimedia Broker. The implementation, which is very well integrated in the Multimedia Broker,
is based on the Broker’s internal XML document format in combination with XML Stylesheets.
We have showed how RDF can be implemented on servers that support server-side scripting
languages such as VBScript or JavaScript. This chapter introduced the RdfClient software, which
can be used to browse RDF documents on any computer and operating system. In the design of
the RdfClient we chose to present the RDF documents in a Tree GUI component, which proved
to be a presentation that worked well with our math exercise case study.

47

6. FUTURE WORK

The RdfClient, although a nice piece of software, may not be the typical RDF consumer in
the future. It is very much tied to the RDF data model and its XML serialization. This is good for
instructional purposes, but the end user may not be that interested in the intemal workings of
RDF.

If the RDF consumer were a machine, it would want another interface than the Graphical
User Interface that RdfClient provides. Clearly there is a need for more specialized consumers of
RDF data. In this section we will outline some ideas on RDF consumers.

6.1. INDEX SERVERS

One of the more obvious RDF consumers is providers of search engines like AltaVista
Lycos, Excite and Webcrawler. Web servers inline RDF metadata information in HTML
documents and this metadata is used by the search spiders when indexing the documents. This
takes us back to the example discussed in the Introduction when we tried to find web documents
authored by William Shakespeare. One of the major objects of describing resources is of course to
enable Resauve Disaoeery.

Web documents
with
inlined RDF
metadata

Web Server

Figure 37- A bright futwrewith RDF data sources

Metadata expressed in RDF or in other formats may be the next big thing for the web. The
potential is enormous. Think about the web as a massive resource of information, with the data
classified according to a few well-known schemas, where the users can find exadly the
information they require. The web would no longer be the library “with all the books on the

floor”.

6.2. RDF AWARE WEB BROWSERS

Another RDF consumer could be the web browser. When visiting a web site the browser can
download an RDF description of the site with any level of granularity. This description can be
used to provide better ways to navigate the site from the browser. The browser can search the
RDF description of the site locally and minimize the number of roundtrips required to the web
site.

48

The Mozilla! web browser has RDF functionality built in. The currently recognized RDF
format does not conform to recommendations from W3C. 'This is likely to change in later
releases and in Netscape Communicator 5.0. RDF will be the data format of choice for all the
Morzilla storage needs]MOZ1]. It will be used to store bookmarks, history lists, site maps, address
books etc. This emphasizes the fact that RDF is a transportable data structure suitable for any
data, not just metadata.

Currently, Netscape Communicator 4.5 sends back RDF data to Netscape's servers to track
the users movements on the net. The information is used to provide users information in the
“what’s related” menu. The browser let’s the user know about web sites that are related to the
one currently viewed.

The Netscape “what’s related” system is currently in full use and Netscape serves over 2
million requests in RDF every day.20

6.3. SOFTWARE AGENTS

A domain with great need for metadata descriptions is that of “Software Agents”. A
description of Software Agents and their use is definitely beyond the scope of this paper. Let me
just point out that the agents need to be able to present themselves and their objectives. Other
agents must understand this presentation, ie. there is need for machine-readable metadata. This
is a domain in which RDF may be useful. Software Agents from different vendors can agree
upon using one or more well-known schemas they both know about.

SICS (Swedish Institute of Computer Science) has research on Software Agents. As part of
my thesis I visited SICS and discussed metadata in this domain. SICS has developed a lisp-like
metadata instance and schema language of their own. There is dearly a need to be able to present
agents in a format that is more widely used, such as RDF21,

6.4. EXISTING DOCUMENT ANALYSIS

Documents saved in popular office applications often contain some metadata. This metadata
is stored inside the document files, which often are of some proprietary binary document format.
Microsoft Office applications let the user specify properties such as tide, subject, author,
company and category. These properties can later be extracted and mapped to Dublin Core
properties such as dc:title, de:subject, de:creator, de:publisher and de:category. This extraction
can be done “on the fly” by a web server component when RDF metadata for the document is
requested by a client.

This means that a large number of existing documents already have some metadata
description. It is just a matter of making this metadata accessible from the web using RDF.

19 Developers can download the source code from ET 7wwwanozlzorg. The Mozilla source code will be used for
Netscape Communicator 5.0.

20 According to email, Novemnber 05, 1998, from Mr. R Guha., Netscape.

21 As an exercise, I and Nicklas Finne (SICS) translated SICS agent metadata descriptions to RDF and RDF Schema.

49

http://v.'.vv.mozilla.om.

7. CONCLUSIONS

In section 1.1 we defined the objectives of this project: “We want to describe the products
and services so outside metadata consumers can discover the products and relationships between
products. We also want to be able to describe and export products and services to other
Multimedia Broker systems or similar systems from other vendors”. This led us to look into the
RDF and RDF Schema specifications. We wanted to use a schema that was general enough to
become widely used on the web. The Dublin Core is a schema that fits that requirement.

In our math exercise data model we added the property, eduwonp, to indicate the
relationships between the resources that constitute our math exercises. We wanted to restrict the
range of the edu:content property to resources of class afiComatObject or simple string values,
called literals. We realized that we had a problem here, because in RDF Schema strings are
considered to be of class 7df: Literal and the RDF Schema specification allows only orerange for a
property. This means that we would have to choose between having edu:ContentObject or
rdfs:Literal as range for the edu:content property. We solved this by not restricting the range of
edu:content property at all. A better solution perhaps would be to think of a string (or literal) as
class-less. This would make strings possible values for all properties, regardless of their range.
Currently, this is not allowed for in the RDF Schema specification.

After working with RDF and RDF Schema we have come to the conclusion that RDF is
about expressing relationships between resources. It is not intended to express full database
models. The heterogeneous and distributed nature of the web makes relationships between
resources important. What is the context of this resource? What other resources are related to
this resource, and in what ways? How can the related resources be retrieved? RDF’s ability to
express relationships between resources is more powerful than the hypertext linking facility in
HTML, because in RDF we have the power to express why the resources are linked. This can be
done in a way that is “machine-understandable”.

The emphasis on relationships is reflected by the RDF Schema specification where focus is
set on properties (which express relationships between resources) rather than on the resources
(or dasses of resources) themselves. In RDF Schema, the dasses differ from classes in the
traditional “object oriented” world where we define classes to have a certain set of properties. In
RDF Schema any number of properties from any number of schemas can be used describe a
resource. Classes don't have a fixed set of properties The class however defines the resource’s
relationship with other resources, because of the subclassing facility. Subclassing let’s us build
taxonomies such us the ones used in libraries.

In modeling the math exercise example we realized that the RDF data model can be used to
model and transport any kind of data not just metadata. In the Mozilla web browser RDF is used
for all kinds of data, such as bookmarks, history lists and site maps.

When we implemented RDF on the Multimedia Broker we successfully used an XSL
processor to convert the Broker’s internal XML data structures to RDF. Increasingly, XML is
used for transporting data between different components of web servers and this project has
shown that such intemal data can be mapped and converted to RDF using XML stylesheets.

50

ACKNOWLEDGEMENTS

This document is the report of a master’s project for Department of Teleinformatics KTH.
The project was held at SITI, the Swedish IT Institute, Stockholm.

REFERENCES

[DC4] Weibel, S., Tannella, R., Cathro, W., The 4% Dublin Core Metadata Workshop Report, Jun-1997, ISSN
1082-9873, http://www.dlib.org/dlib/june97/metadata/06weibel. html

[DC5] Weibel, S., Hakala, J., DC-5: The Helsinki Metadata Workshop, D-Lib Magazine, Feb-1998, ISSN 1082-

W CHID . OTg /AlD TEDIATYYS /U LAWEIDEL T

[DCD] Document Content Description for XML, 31-Jul-1998, Submission to the World Wide Web Consortium,
o wwaw3ore TR 1998 NO T E-ded-19980731 html

[DCPURL] The Dublin Core Metadata Homepage, 1-Jan-1999, http://pusrl.oclc.org/metadata/dc/

[DELCA] Delcambre, L. M. L., Maier, D., Reddy, R.., Anderson, L.: Structured Maps: modeling explicit semantics
over a universe of information. In: Fuemationdal Jounal on Digital Libraries, Springer-Verlag, 1997

[DOM] World Wide Web Consortium: Document Object Model Specification 1.0, W3C Recommendation 20-
Jul-1998, http:/[Wwww3otg/ TF7 19987 W D-DONM-199807 24

[DSIG] World Wide Web Consortium: Digital Signature Initiative Overview,
http://www.w3.org/DSig/Overview.html

[1SO13250] 1SO JTC1/WG4, Information Processing — SMGL Applications — Topic Navigation Maps, ISO/TEC
CD 13250, Commitiee Drafi, [fTp:/ 7 Www Nightext.com/ Tl psangs nui]

[MCF] World Wide Web Consortium: Meta Content Framework Using XML, W3C Note, 24-Jun-1997,
http://www.w3.org/TR/NOTE-MCF-XML-970624

[MILL] Miller, E.: An Introduction to the Resource Description Framework. In: D-Lib Magazine, ISSN 1082-
9873, May 1998, http://www.dlib.org, dlib/may98/miller/05miller.html

[MMBROK] Swedish Institute for Systems Development, SISU: Multimedia Broker, Developing Critical Support
Tools for Multimedia Publishing, [attp://wWww.sisu.se/Projects mmD

[MOZ1] Guha, Churchill, R., Giannandrea, J.,,RDF. The Mozilla Organizilion,
Mo 7w mozttrorg] rdf/doc/index html

[P3P] World Wide Web Consortium: P3 Project Overview, hitp: /Fwww W3.018 P3P]

[P1CS] World Wide Web Consortium: PICSRules 1.1, W3C Recommendation 29-Dec-1997,
R/ /wwwawsorg/ TR/ REC-PICS Rules-971229

[RDF] World Wide Web Consortium: Resource Description Framework (RDF) Model and Syntax, W3C Working
Draft 7-Oct-1998, http://www.w3.0rg/1998/10/WD-rdf-syntax-19981008

[RDF4XML] http: /W alphaworks ibmcon}

[RDFFAQ)] World Wide Web Consortium: Frequently Asked Questions about RDF,
B WSO R F/FAQ

ol

http:///www.dlib.om/dlib/februarv98/02weibel.hun!
http://v.'WW.w3.omjTR/1998/NOT
http:///www.w3.org/TR/1998/WD-DOM-19980nO
http://httr:/lwww.higbtext.mm/tnm/psian98.htm
http://www.si.sl.J.se/proiect.~/mmbroker/what.htm
http://v.'WW.mozilla.org/
http:///www.w3.org/P3P/
http://www.w3.org/TR/R
http:///www.alphaworks.ibmcom
http://wv.w.w3.org/RD

[RDFINTRO] World Wide Web Consortium: Introduction to RDF Metadata, W3C Note 13-Nov-1997,
http://www.w3.org/TR/NOTE-rdf-simple-intro-971113.html

[RDFSCH] World Wide Web Consortium: Resource Description Framework (RDF) Schema specification, W3C
Working Draft 30-Oct-1998, http://www.w3.0rg/TR/1998/WD-rdf-schema-19981030/

[RDU] Research Data Network, Resource Discovery Unit, DSTC: Resource Discovery — A definition, DSTC

Symposium, 1995, http:/ /www.dstc.edu.au/RDU/RD-Defn/

[WP] Lagoze, C., Digital Library Research Group, Comell University, D-Lib Magazine, Jul/Aug-1996, ISSN
1082-9873, http:/ /www.dlib.org/dlib/july96 /lagoze/07lagoze.html

[XML4]] http:/Fwwwalphaworks.lbm com]

[XMLDATA] World Wide Web Consortium: XML-Data, W3C Note, 5-Jan-1998,
http://wwww3.org/TR/1998/NOTE-XM L-data-0105

52

http:///www.alphaworks.ibmcom

APPENDIX A. THE EXTENSIBLE MARKUP LANGUAGE

The Extensible Markup Language (XML) is a simplified version of SGML, specifically designed
with the World Wide Web in mind. An XML document is also an SGML document. XML has
brought with it a number of other standards (or proposed standards), e.g. XLink (XML Linking
Languge) and XSL (XML Stylesheet Large).

XML differs from HTML in that it doesn't mix e with dipemsme. i

WHY XML? WHY NOT JUST HTML OR SGML?

It's all the same, isn't it? No, not quite, XML is a simpler version of SGML. It omits the more
complex and less-used parts of SGML in rewm for the benefits of being easier to write
applications, easier to understand, and more suited to delivery and interoperability over the web
[XMLFAQ].

With both XML and SGML you can use DTD to define your own markup language. HTML is
just one of those markup languages possible to define with XML/SGML. In fact, in the specs for
HTML 4.0 [HTML] an HTML docurnent is defined as:

E An HTML document is an SGML document that meets the constraints of this
 spedfication (HTML 4.0 specs)

XML or Extensible Markup Language has really taken off with major software vendors
supporting it. The media hype has resulted in a large number of documents about XML on
WWW. We will look at XML as it is the preferred way to transport RDF Fel! Hittar inte

XML allows people to create their own markup languages, tailor made for the particular needs of
a particular community. One example of such a markup language is MahML1, which can express
advanced mathematical formulas. Other markup languages can be developed, eg. one for
chemical formulas and another for musical scores.

XML is not concerned with how these documents should be displayed. It's up to the applications
that read the documents to decide what to do with them. A document describing music (a
“MusicML" document) may be plgad, rather than dispéped by the application

If we retum to our example on searching the WWW for information on books writlen by Winston
Churchill we realize the benefits of XML. We could invent a markup language for describing
documents about books. Part of a document could look as follows:

<book>
<title>Liberal and the Social Problem</title>
<authorsWinstor urchill</anthors

<publisher>Hed & Stoughton</publishers>

<comment>This early speech collection of the fighting radical("a traitor to his
class") is now extremely scarce and many predict it will socar in value over the
next decade.</comments>
</book>

An “intelligent” search engine could immediately conclude that this document is relevant for our
query. Of course, for this to be useful we need to standardize how documents (and other
resources) should be described, and that’s where RDF and sdenas come into play.

XML DOCUMENTS

The XML specification defines a class of data objects called XML doasmeus. Fach XML
document has both a logical and a physical structure. Phsiaally the document is composed of
units called eities. An entity may refer to other entities to cause their inclusion in the document.
A document begins in a “root” or document entity. Logiaully, the document is composed of
declarations, elements, comments, character references, and processing instructions, all of which
are indicated in the document by explicit markup [XML].

This is an example of a complete XML document:

<?xml version="1.0"2>
<story>The rabbit used to hang out in bars</story>

The first line is an example of a Doasment Tipe Decaration. The document type declaration
isn’t mandatory. This is also a complete XML document:

<story>The rabbit used to hang out in bars</story>

DOCUMENT TYPE DEFINITION - DTD

The XML document type declaration contains or points to markup declarations that provide a
grammar for a class of documents. This grammar is known as a Daame Bype Defirtitions (DTD).
The document type declaration can point to an external subset containing markup declarations,
or can contain the markup declarations directly in an intemal subset, or can do both. The DTD
for a document consists of both subsets taken together [XML].

The DTD defines constraints on the logical structure of the document. The following document
has an extemnal DTD that defines it syntax:

<?xml version="1.0"?2>
<!DOCTYPE story SYSTEM “standard_story.dtd”>
<story>The rabbit used to hang out in bars</story>

The DTD could look like this:

<!DOCTYPE standard_story.dtd
<!ELEMENT story (#PCDATA)>
>

For further information on XML and DTD please refer to W3Cs specification [XML].

WELL-FORMED VS, VALID XML

There are essentially two related types of XML documents: Wel-Formed and Valid. A well-formed
XML document conforms to the general rules of XML syntax, which are more rigorous than
those of either HTML or SGML. XML character data is never left an ending markup designation
of some sort, either an end tag such as in the element <story> </story > or a special empty
element tag with a forward slash before the right-angle bracket, such as <story/>.[CNET1]
[XMLFAQ)]

Valid XML documents are ones that conform to a specific DTD. Confirming the validity of
XML documents is largely the work of authoring and publishing tools, whereas XML-capable
browsers need only check for well-formedness in order to read XML documents. [CNET1]
[XMLFAQ)]

XML NAMESPACES

Although XML namespaces specs [XMLNSP] is still a working draft, the notion of namespaces is
fundamental to implementing RDF on top of XML.

XML namespaces provide a simple method for qualifying names used in XML documents by
associating them with namespaces identified by URIL. Namespaces provide universal names,
whose scope extends beyond their containing document. The combination of the universally
managed URI namespace and the local name produces names that are guaranteed universally
unique [XMLNSP].

Here is an example of an XML namespace in use:

<?xml:version="1.0"7?>

<books KmITS="1CCp: /7 DOOR 5 ome
<Title>Liberalism and the Social Problem</Title>
<Authors>Winston Churchill<author>
<de:Rating>Interesting</de:Rating>

</books>

XML namespaces allows us to combine elements and attributes whose semantics (schemas) are
defined by different authorities. In this example an XML processor can look up the semantics for
the de prefix and find out that the possible ratings are ? interesting 2 cool or » aazy. It is up to
the processor or application to decide what to do with this information.

The example declares bocks as the default namespace. This means that fitle and aubor wil be
resolved as books:title and books:autthor.

Currently there is no standard way for RDF processors to read and process such schemus.
Document Object Model

The Doawnent Objact Model (DOM) specification defines a platform- and language-neutral interface
that will allow programs and scripts to dynamically access and update the content, structure and
style of documents [DOM].

The DOM applies both to HTML and XML documents to provide a single document metaphor.
Browser vendors such as Microsoft [MSDOM] and Netscape have developed proprietary
documents models which has caused problems for site builders who want their content to work
on both platforms. A more formal description of the DOM for XML, check out W3C
[DOMXML]

The DOM lets you build a document in memory with a number of methods. For a simple
example of this, take a look in Appendix xx.

XML STYLESHEETS - XSL

XML documents don’t specify how they are to be displayed. That is the role of the Extensible
Stylesheet Language (XSL). The W3C has issued a working draft for the XSL requirements. As
usual the working draft is subject to change [XSL].

How are stylesheets used? The simplest application is to feed an XML document and an XSL
stylesheet into an XSL processor. The processor produces a displayable document in a format
determined by the rules in the stylesheet:

http://xmlns="http://books.com/schernas/"
http://xrnlns:de="http://ekengren.com/schemas">

XML Document

Displayable
Document in, e.g. |
XSL Processor » HTML, RTF, or
Postscript

XSL Stylesheet

Figure 38: XS processing prodhucing HTM L, RDF or Postscript

You can make web browsers capable of reading an XML document an XSL stylesheet in the
same way current browsers read and display HTML documents. The beauty of the XML/XSL
approach is that a document’s @ruignt is separated from its afpancre.

A good introduction to XSL and the Microsoft XSL processor can be found in
[XSLTUTOR]. For an example of what an XSL Stylesheet might look like, take a look in
Appendix B. Note that the XSL Stylesheet is expressed in XML and is in fact an XML document.

REFERENCES

[CNET1] Gorman, T.: 20 Questions on XML, 10-Mar-1998,
http:/ /www.builder.com/Authoring/Xml20/index. html

[DC5] Weibel, S., Hakala, J., DC-5: The Helsinki Metadata Workshop, D-Lib Magazine, Feb-1998, ISSN 1082-
9873, D/ 7 wWww.dlib.o1g/ dlib/ Tebruav9s/ U 2webeL s

[DOM] World Wide Web Consortium: Document Object Model Specification 1.0, W3C Recommendation 20-
Jul-1998, http: /fwwww3org/ TR/ 1998/ WD-DOM-199807 (]

[DOMXML] World Wide Web Consortium: Document Object Model (XML), W3C Working Draft 16-Apr-1998,
http://wwww3.org/TR/WD-DOM/level-one-xmlhtml

[HTML] World Wide Web Consortium: HTML 4.0 Specification, W3C Recommendation, revised on 24-Apr-
1998, 7 Twwww3.org/ TR7 19887 REC Dm0 10080474

[MSDOM] Microsoft Corporation: The XML Object Model in Intemet Explorer 4.0, 7-Jan-1998,

http: /W ITITOSOI oo Rl arales/ Kmlmodelas)

[RDF] World Wide Web Consortium: Resource Description Framework (RDEF) Model and Syntax, W3C Working
Draft 8-Oct-1998, http: / [Wwwws.ora/ 19987 107 W D-rdl-syntax- 10081008

[RDFFAQ] World Wide Web Consortium: Frequently Asked Questions about RDF,
http:/ /www.w3.org/RDF/FAQ

[XML] World Wide Web Consortium: Extensible Markup Language (XML), 8-Dec-1997,
Ritp:/ S wwwiws.org/ TR/P R-xml-971204

[XMLFAQ] World Wide Web Consortium: Frequently Asked Questions about the Extensible Markup Language,
the XML FAQ), Version 1.41 (6-oct-1998). Fip/ /wwwuccic/xml]

http://hUP:!/www.dlib.org/dlib/februar'98/02wei~l.html
http:///www.w3.org/TR/1998/WD-DOM-19980nO
http://hup://www.w3.org/TR/1988/REC-html40-19980424
http:///www.microsoft.=m/xmI/articJes/xmlmodel.asp
http:///www.w3.org/1998/10/WD-rdf-svntax-I9981OO8
http://WVvw.w3.om/TR/PR-xmI-971208
http://www.ucc.ie/xmI/

[XMLNSP] World Wide Web Consortium: Namespaces in XML, W3C Working Draft 16-Sep-1998,
lattp://wwewi.org/ 1 R/1998/WD-xmi-names- 19950910

[XSL] World Wide Web Consortium: XSL Requirements Summary, W3C Working Draft 11-May-1998,
http:/ /wwww3.org/TR/WD-XSLReq

[XSLTUTOR] Microsoft Corporation: XSL Tutorial, 7-jan-1998,
[OS0! OO XMl X1 TOTOTE TOTOrALas])

http://www.w1.org/TR/1998N?D-xmI-names-19980916
http://www.microsoft.com/xml/xsl/tutorial/tutorial.aso

APPENDIX B. THE XML TO RDF STYLESHEETS

This section provides examples of XSL stylesheets that convert the internal XML format
used in the Multimedia Broker to RDF. Similar stylesheets can be created to generate RDF from
other platforms that use XML.

The following is an example of the internal XML generated in the Multimedia Broker by a
database quety. It represents a math exercise.

<ROW>

<CATTRIBUTE INTERNALID="124" DT="4r" SQLDT="4" SQLPREC="10"
ISNULL="false">3</CATTRIBUTE>

<CATTRIBUTE ID="9001" NAME="Uppgift.Presentation" ENTITY="Uppgift"

ATTRIBUTE="Presentation" DT="10" SQLDT="12" SQLPREC="255"
ISNULL="false">127.0.0.1/VNDatabaser/Edu/VNContentServer.asp? INFOPROD_ID=19&a
mp; ProdId= 3</CATTRIBUTE>

<CATTRIBUTE ID="199" NAME="Uppgift.Namn" ENTITY="Uppgift" ATTRIBUTE="Namn" DT="10"
SQLDT="12" SQLPREC="50" ISNULL="false">Problem exercise: Problem 2</CATTRIBUTE>

<CATTRIBUTE ID="190" NAME="Uppgift.Uppgift" ENTITY="Uppgift" ATTRIBUTE="Uppgift"
DT="10" SQLDT="12" SQLPREC="255" ISNULL="false">

<A HREF =
"http:/le?.O.D.l/VNDatabaser/Edu/VNContentServer.asp?INFOPROD_ID:lB&Prod
Id= 3">Problem exercise: Problem 2

</CATTRIBUTE>

<CATTRIBUTE ID="176" NAME="Uppgift.Skapad" ENTITY="Uppgift" ATTRIBUTE="Skapad"
DT="10" SQLDT="12" SQLPREC="50" ISNULL="false">1998-12-09</CATTRIBUTE>

<CATTRIBUTE ID="105" NAME="Uppgift.Uppgift_Id" ENTITY="Uppgift"
ATTRIBUTE="Uppgift_Id" DT="4" SQLDT="4" SQLPREC="10"
ISNULL="false">3</CATTRIBUTE>

<CATTRIBUTE ID="106" NAME="Uppgift.Upphovsman" ENTITY="Uppgift"
ATTRIBUTE="Upphovsman" DT="10" SQLDT="12" SQLPREC="255" ISNULL="false"sPeter
Rosengren</CATTRIBUTE>

<CATTRIBUTE INTERNALID="134" DT="4" SQLDT="4" SQLPREC="10"
ISNULL="false">7</CATTRIRUTE>

<CATTRIBUTE ID="175" NAME="Svårighetsgrad.Grad"
ENTITY="Svårighetsgrad" ATTRIBUTE="Grad" DT="10" SQLDT="12" SQLPREC="50"
ISNULL="false">Middle</CATTRIBUTE>

<CATTRIBUTE INTERNALID="14(0" DT="4" SQLDT="4" SQLPREC="10"
ISNULL="false">6</CATTRIRUTE>

<CATTRIBUTE ID="126" NAME="Moment.Beskrivning" ENTITY="Moment"
ATTRIBUTE="Beskrivning®” DT="10" SQLDT="12" SQLPREC="255"
ISNULL="True">NULL</CATTRIBUTE>

<CATTRIBUTE ID="125" NAME="Moment.Namn" ENTITY="Moment" ATTRIBUTE="Namn" DT="10"
SQLDT="12" SQLPREC="255" ISNULL="false">Fractions and potency</CATTRIBUTE>

<CATTRIBUTE INTERNALID="135" DT="4" SQLDT="4" SQLPREC="10"
ISNULL="false">1</CATTRIBUTE>

<CATTRIBUTE ID="123" NAME="Kategori.Namn" ENTITY="Kategori" ATTRIBUTE="Namn"
DT="10" SQLDT="12" SQLPREC="50" ISNULL="false">Träna
Problemléö ; sning</CATTRIBUTE>

<CATTRIBUTE ID="195" NAME="Kategori.Beskrivning" ENTITY="Kategori®
ATTRIBUTE="Beskrivning" DT="10" SQLDT="12" SQLPREC="255"
ISNULL="True">NULL</CATTRIBUTE>

<CATTRIBUTE INTERNALID="139" DT="4" SQLDT="4" SQLPREC="10"
ISNULL="false">4</CATTRIBUTE>

<CATTRIBUTE ID="194" NAME="Förkunskapskrav.Beskrivning"
ENTITY="Fö ; rkunskapskrav" ATTRIBUTE="Beskrivning" DT="10" SQLDT="12"
SQLPREC="255" ISNULL="True">NULL</CATTRIBUTE>

<CATTRIBUTE ID="193" NAME="Förkunskapskrav.Namn"
ENTITY="Fö rkunskapskrav" ATTRIBUTE="Namn" DT="10" SQLDT="12" SQLPREC="50"
ISNULL="false">The four ways of counting</CATTRIBUTE>

<CATTRIBUTE INTERNALID="136" DT="4" SQLDT="4" SQLPREC="10"
ISNULL="false">2</CATTRIBUTE>

<CATTRIBUTE ID="122" NAME="Bild.Upphovsman®" ENTITY="Bild" ATTRIBUTE="Upgphovsman"
DT="10" SQLDT="12" SQLPREC="255" ISNULL="false"s>¥Yngve Pavasson</CATTRIBUTE:>

<CATTRIBUTE ID="121" NAME="Bild.Bildtyp" ENTITY="Bild" ATTRIBUTE="Bildtyp"™ DT="10"
SQLDT="12" SQLPREC="255" ISNULL="false">GIF</CATTRIBUTE>

<CATTRIBUTE ID="192" NAME="Bild.Namn" ENTITY="Bild" ATTRIBUTE="Namn®" DT="10"
SQLDT="12" SQLPREC="255"
ISNULL="false">D:&Cuml; InetpubÖ ; wwwroot&Cuml ; VNDatabaserÖ ; EduÖ ; B1
okbÖ 0331-31.gif</CATTRIBUTE>

<CATTRIBUTE INTERNALID="128" DT="4" SQLDT="4" SQLPREC="10"
ISNULL="false">2</CATTRIBUTE>

<CATTRIBUTE ID="108" NAME="Uppgiftstext.Text" ENTITY="Uppgiftstext"
ATTRIBUTE="Text" DT="10" SQLDT="65535" SQLPREC="1073741824" ISNULL="false">A

rope is 120 cm. The rope is to be cut into two parts.
One of the parts shall

be twice as long as the other.
State the lenghts of the two

parts.</CATTRIBUTE>

<CATTRIBUTE INTERNALID="138" DT="4" SQLDT="4" SQLPREC="10"

ISNULL="false">2</CATTRIBUTE>

<CATTRIBUTE ID="196" NAME="Lösning.Text" ENTITY="Lösning"
ATTRIBUTE="Text" DT="10" SQLDT="12" SQLPREC="255" ISNULL="false">120 = 80 +
40</CATTRIBUTE>

<CATTRIBUTE ID="189" NAME="Lösning.Kommentar" ENTITY="Lösning"
ATTRIBUTE="Kommentar" DT="10" SQLDT="12" SQLPREC="255"
ISNULL="True">NULL</CATTRIBUTE>

<CATTRIBUTE INTERNALID="137" DT="4" SQLDT="4" SQLPREC="10"
ISNULL="false">3</CATTRIBUTE>

<CATTRIBUTE ID="173" NAME="Matematiktal.Tal" ENTITY="Matematiktal" ATTRIBUTE="Tal"
DT="10" SQLDT="12" SQLPREC="255" ISNULL="True">NULL</CATTRIBUTE>

< /ROW>

The XML document and the XSL stylesheet below are fed to the XSL processor. This
creates the RDF document.

<xsl>
<rule>

<root/>

<! [CDATA[

11>

<?xml version="1.0"2?>
<rdf>

<children/>

</rdf>
</rule>

<!-- Don’'t display header -->

<rule>
<target-element type="ROW" position="first-of-type"/>
<empty />

</rule>

<rule>
<target-element type="CATTRIBUTE">
<attribute name="ID" value="190"/>
</target-element>
<select-elements>
<target-element type="A"/>
</select-elements>
</rule>

<rule>
<target-element type="A"/>
<! [CDATA[

<edu:Exercise ID="]]><eval>getAttribute(’'HREF’)</eval><![CDATA[">
11>
</rule>

<rule>
<target-element type="ROW"/>

<! [CDATA[
<!-- Instance of class edu:Exercise -->]]>

<select-elements>

<target-element type="CATTRIBUTE">
<attribute name="ID" value="190"/>
</target-element:>

</select-elements>

<! [CDATA[<dc:title>]]>

<select-elements>

<target-element type="CATTRIBUTE">
<attribute name="ID" value="199"/>
</target-element>

</select-elements:>

<! [CDATA[</dc:title>

11>

<! [CDATA[<dc:creator>]]>

<select-elements>

<target-element type="CATTRIBUTE">
<attribute name="ID" value="106"/>
</target-element>

</select-elements>

<! [CDATA[<"</dc:creator>

11>

<! [CDATA[<dc:date>]]>
<select-elements>
<target-element type="CATTRIBUTE">

<attribute name="ID" value="176"/>
</target-element>
</select-elements>
<! [CDATA[</dc:Date>
11

<! [CDATA[<dc:relation rdf:resource="xxx"/>

11>

<! [CDATA[<edu:id>]]1>
<select-elenments>
<target-element type="CATTRIBUTE">
<attribute name="ID" value="105"/>
</target-element>
</select-elements>
<! [CDATA[</edu:id>
11>

<! [CDATA[<edu:level>]]>

<select-elements> <«target-element type="CATTRIBUTE">
<attribute name="ID" value="175"/>
</target-element>

</select-elements>

<! [CDATA[</edu:level>

11>

<! [CDATA[<edu:category>]]>
<select-elements>
<target-element type="CATTRIBUTE">
<attribute name="ID" value="123"/>
</target-element>
</select-elements>
<! [CDATA[</edu:category>
11>

<! [CDATA[<edu:subject>]]>
<select-elements>
<target-element type="CATTRIBUTE">
<attribute name="ID" value="125"/>
</target-element>
</select-elements>
<! [CDATA[</edu:subject>
1>

<! [CDATA[<edu:prerequisites>]]>
<select-elementss>
<target-element type="CATTRIBUTE">
<attribute name="ID" value="193"/>
</target-element>
</select-elements>
<! [CDATA[</edu:prerequisites>
11>

<! [CDATA[<edu:content>
<rdf:Description>
<edu:text>]]>
<select-elements>
<target-element type="CATTRIBUTE">
<attribute name="ID" value="108"/>
</target-element>
</select-elements>
<! [CDATA[</edu:text>
<edu:image resource="]]>
<select-elements>
<target-element type="CATTRIBUTE">
<attribute name="ID" value="192"/>
</target-element>
</select-elements>
<! [CDATA[" />
<edu:solution>]]>
<select-elements>
<target-element type="CATTRIBUTE">
<attribute name="ID" value="196"/>
</target-element>
</select-elements>
<! [CDATA[</edu:solution>
</rdf:Description>
</edu:content>
11>

<! [CDATA[</edu:Exercise>
11>

</rule>

<rule>

<target-element type="RESULT"/>
<children/>

</rule>

<rule>

<targem-element type="QUERY"/>
<children/>

</rule>

</xsl>

The XSL processor produces the following output after processing the XML document and
stylesheet above:

<rdf:RDF>
<edu:Exercise ID =
[MCTp:7/127.0.0. /VNDatabater/ EdU/ VNCONLENLoerver . asp 7 INFOPROD_ID=18&Prodldd 3">
<dc:title>Problem exercise: Problem 2</dc:title>
<dc:creator>Peter Rosengren<"</dc:creator>
<dc:date>1998-12-09</dc:date>
<dc:relation rdf:resourc e=
[FRCTE:= 77127 . U.U. IT7VNDatabaser/Edu/VNCONLentServer .asp? INFOPROD 1D=180&Proaldyd 33" />
<edu:ld>3</edu:1d>
<edu:level>Middle</edu: level>
<edu:category>Träna Problemlösning</edu:category>
<edu:subject>Fractions and potency</edu:subject>
<edu:prerequisites>The four ways of counting</edu:prerequisitess>
<edu:content>
<rdf:Description>
<edu:Text>A rope is 120 cm. The rope is to be cut into two parts. One of the
parts shall be twice as long as the other. State the lenghts of the two
parts.</edu:Text>
<edu:Image resource =
"D:ö Inetpubö wwwrootö VNDatabaserö Edu&a#246; Blobö0331-
il)l e~
<edu:solution>120 = 80 + 40</edu:soclution>
</rdf:Description>
</edu:content>
</edu:Exercise>
<rdf:RDF>

http://'http://127.0.0.l/VNDatabaser/Edu/VNContentServer.asp?INFOPROD_ID=19&Prodld=
http://'http://127.0.0.1/VNDatabaser/Edu/VNContentServer.asp?INFOPROD_ID=19&ProdId=

APPENDIX C. THE RDFCLIENT SOFTWARE

This appendix provides some additional information about the RdfClient software that was
developed as a part of this project.

SYSTEM REQUIREMENTS

e Java Virtual Machine 1.2 or later
e IBM’'s XML4j (XML for Java) 1.1.4 or later
e IBM’s RDFforXML November 1998

THE RDFFORXML PARSER CLASSES

The main classes for building the RDF data model are:

| RDFObject |
RDF |-contains—@ (virtual base (O—————has value
H class) H

,,,,,,,,,,,, — —]

! RDFContainer |

r.i (virtual base —contains RDFDescription —contains

1 class) i
contains _I H |

contains

RDFProperty

String (O——has value

RDFAlternatives RDFSequence RDFBag

Figure 39: The RDF parser’s class bienardyy

APPENDIX D. SOFTWARE TOOLS

SIRPAC (W3C)

The SIRPAC homepage at W3C gives the following introduction: “This program compiles
RDF/XML documents into the 3-tuples of the corresponding RDF data model. The documents
can reside on local file system or at a URI on the Web. Also, the parser can be configured to
automatically fetch corresponding RDF schemas from the declared namespaces. This version is
suitable for embedded use as well as command line use. SiRPAC builds on top of the Simple API
to XML documents (SAX).”

Try it out at: fip:/7www.w3.org/ RDY /Implementations/SiRPAC/

XMLFORJAVA (IBM)

IBM offers a free walidating parser for XML written in 100% pure Java. Validating means that it
checks the XML document against the DTD and reports any errors. Many other parsers currently
don't read the DTD.

The parser comes with full source code and may be downloaded from:

hittp://www.alphaworks ibm.com]formula.nsf/toolpreview/7BC35F3E4E69996A882565A7
00035C56

RDFFORXML (IBM)

RDF for XML is an RDF processor written in Java for building, querying, and manipulating
RDF structures and reading and writing them in XML forms. The current implementation
conforms to the working draft dated 10/8/98 of the RDF Syntax and Model working group of
the W3C.

A free download is available at:

ttp: / /www.alphaworks.ibm.com/formula.nsf Jal uirements/28 EFAC36442F1ADSSS
2565E10059AE39#Install

INTERNET EXPLORER 5 (MICROSOFT)

The newest version of Internet Explorer (currently the second beta release) contains an XML
parser, an XSL processor and a DCD schema validator.

Microsoft will be happy to tell you more at http://www.microsoft.com

COMMUNICATOR 4.5 (NETSCAPE)

Communicator’s “What's Related” feature send RDF descriptions back to Netscape’s servers
to track users movements on the net.

htip: / /www.netscape.cor

XML STYLER (ARBORTEXT)

XML Styler is a tool for creating XSL stylesheets. It can be freely downloaded from

btip://www.arbortext.com/xmistyler/index htm]

http://vvv:.'W.w3.org/RDF
http://VV,'W.alphaworks.ibmcom/
http://WVVVv'.alphaworks.ibmcom/formula.nsf/
http://Vo'Vvw.netscaoe.com
http://VV,'W.arbortext.com/xmlstyler/index.htm.

	page1
	titles
	PUBLIKATION 98:20
	M tadata on the W b
	Dag Ekengren

	images
	image1
	image2

	page2
	titles
	Förord

	page3
	page4
	titles
	5.
	4.3.1. Type System - C/asses and Properties 2!
	4.3.2. Constraints .1 23
	4.6. SUMMARy .1.. ..•... 28
	I
	I
	5.2.1. The XSL processor 1.. 34
	5.2.2. Other Server lmp/ementations 35
	5.3.1. RdfC/ient Functiona/ity-A Guided Tour 37
	5.3.2. Inside RdfClient 42
	5.3.3. Different Views of Data ..•.. 47
	5.3.4. Summary _ 47
	~:~: :;~ ~::~~~·B~~~~~~~::::::::::::::::::::::::::::::::::::::L::~
	I
	I
	I
	1
	3

	page5
	titles
	------------------------ -------------
	! .. -----.-.---------.-----.-.-.-.--.---.---.------------------···--1
	---,_.,------------------------------~
	4

	page6
	titles
	5

	page7
	titles
	6

	page8
	titles
	.•••...•.. _.~._---------_ ... _--- ,-_ ... _-----_. __ ._---_ ... _-----_._~._._ ... -
	, ... ·- .. ···-:~~ .. :~ ... ~~:·-:·~-~-·:: ... ~·-::l· .. ;~~-·:=:~·= .. ::~:::·::···:~~-·:~:.-·:::---··I
	. !
	7

	page9
	titles
	Cataloging

	page10
	titles
	9

	page11
	titles
	10

	page12
	titles
	. __ _-~-_._._--------_._-_._--_._-------_._-------_.-------
	11

	page13
	images
	image1

	page14
	titles
	13

	page15
	titles
	In our math exercise, it will suffice to use a literal value for dme:JlOr. We could add a picture
	14

	images
	image1

	page16
	titles
	15

	page17
	titles
	C)-dc:creator--. Dag Ekengren
	Figure 8: No reifrntion here. This statonmJ canrot te rifemrl to. Sin:E 110 judglH81t can te p/aari
	The above statement is reified to:
	rdf:subject
	dc:creator
	---.. Dag Ekengren
	/
	rdf:object ------< dc:creator)
	statementOO
	Figure 9: The statt:mmt Ixis tom reifi8i
	This is still the same statement as the one above, but we Gm now refer to it by the id
	rdf:subject
	dc:creator --.. Dag Ekengren
	'df'Obj~ ~ """alo')
	rdf:predicate ~----
	dc:creator --.. John McEnroe
	~
	1998-11-17
	Figure 10: Statements aIxut a statmlmt. WOO St!}S that the amtor if the 1'I8Sa.lJ('8 is Dag
	The serialization to XML is vety simple:
	16

	images
	image1
	image2
	image3
	image4

	page18
	titles
	ed"~:'r-----V",_0- o
	17

	images
	image1
	image2

	page19
	titles
	The RDF description in 3.5 can be abbreviated to:
	18

	page20
	titles
	19

	tables
	table1

	page21
	titles
	20

	images
	image1
	image2

	page22
	titles
	/
	ed:X:~ ----X:-1 - o
	~ .
	21

	images
	image1
	image2
	image3

	page23
	titles
	22

	images
	image1

	page24
	titles
	23

	page25
	titles
	I
	~
	\~~~'1
	24

	images
	image1
	image2
	image3

	page26
	titles
	~ 'd"T'''') I
	25

	images
	image1

	page27
	titles
	26

	tables
	table1

	page28
	titles
	27

	page29
	titles
	28

	images
	image1
	image2
	image3

	page30
	titles
	29

	tables
	table1

	page31
	titles
	30

	page32
	titles
	\
	/
	"
	\ "" /' V."" ""T~
	(/
	Figum 21: A rnath e.xwd.9:! instan:E~ by the Multimeiia Broker.
	The rnath exercise uses the Dublin Care RD F schema and the following edt RDF schema:
	31

	images
	image1
	image2
	image3
	image4
	image5
	image6
	image7

	page33
	titles
	~~y
	'\ / ""'>0'0")

	, .
	32

	images
	image1
	image2

	page34
	titles
	33

	images
	image1
	image2
	image3

	page35
	titles
	34

	page36
	titles
	35

	images
	image1

	page37
	titles
	5.3. CLlENT SIDE - THE RDF CLIENT
	36

	page38
	titles
	37

	page39
	titles
	Brcusing an RD F da::um?nt
	38

	images
	image1

	page40
	titles
	·:9~·i.~g.~:.0.:·:.·~.-:~.·:~·:::.·.~.· .. ·.·:::.:.:· .. ·:.:·:.·:·:.J§~~:;:~i.i.:~:· .. ~.~.~.·~"~i~~~.··i.~:~·i:~L:;:
	39

	images
	image1

	page41
	titles
	® @§j {~~~U:i[@~}ii
	Editing an RDF da:urrn1l
	40

	images
	image1
	image2

	page42
	titles
	@ Gi2'J i~<(jg;[?Xm
	41

	images
	image1
	image2

	page43
	titles
	Schm1a SupjX»1
	42

	images
	image1
	image2

	page44
	titles
	1 . The XM L pan:er rmds the RD F da:urrr?J11.
	43

	page45
	titles
	2. The RDF pars?!" t~ the DOM trre
	44

	images
	image1

	page46
	titles
	3. The fFC Mutab!eTreeNrxJe C1asses wmp the RDF data rrrrkl c1asses
	I
	45

	images
	image1

	page47
	titles
	~ l1F1 ~~~t I
	4. Dexriptions are11JJi:1f{Xd inJFC TableMcxlel
	5. RDF ScIJm1as
	46

	images
	image1

	page48
	titles
	47

	page49
	titles
	\
	48

	images
	image1
	image2

	page50
	titles
	49

	page51
	titles
	50

	page52
	titles
	ACKNOWLEDGEMENTS
	nus document is the rq:xJrt of a master' s project for Department of Teleinforrnatics KTH.
	The project was held at SITI, the Swedish IT Institute, Stockholm
	----_._---~~--------_._-
	REFERENCES
	----_._._._._ _ .. __ .~. __ ._.,_ _------_ _ _---~._ .. _._---_.-
	51

	page53
	titles
	52

	page54
	page55
	page56
	titles
	3

	page57
	titles
	Fp 38: XSL prrxessingpro::lucirg HTM L, RDF or PosNYipt
	4

	images
	image1

	page58
	titles
	5

	page59
	page60
	titles
	.---------- ... ------.-- ------
	----------------_._.~_ .. ~~---
	APPENDIX B. THE XML TO RDF STYLESHEETS
	1

	page61
	titles
	The XML doa.unent and the XSL stylesheet below are fed to the XSL processor. This
	2

	page62
	titles
]] >
	3

	page63
	titles
	The XSL processor produces the following output after processing the XML docwnent and
	4

	page64
	titles
	L ~~~~~~ _
	L
	5

	images
	image1

	page65
	titles
	1

