
A Tool for ~ of Multimedia
Information Retrieval Systems

- requirements and functional specification

Tapani Kinnu1a

•

1. Introduction

Today corporate users need to access and combine information from a number of
information sources. Some business information is stored in relationai databases, while
other important information is accessed through searches in a text retrieval system.
Additional sources of information may be picture and drawings archives. Each information
source might have its own data model and access mechanism, or query language, causing
severe usability problems.

The objective of the Intuitive project is to provide efficient and easy to use tools for end
users to access information in heterogeneous corporate databases.

Within the project we are investigating users and application requirements to define a
generic architecture for Information Retrieval from heterogeneous databases.

The project also address the needs of application designers in developing methods and tools
for customising the generic software architecture for different applications. In this sense
Intuitive can be seen as both ageneric retrieval system as weIl as a system for creating
information retrieval applications.

Rosengren et al have already given an overview of this work [Rosengren93a],
[Rosengren93b], [Rosengren93c]. Wingstedt et al discuss the requirements on the
functionality of end-u ser tools for Information Retrieval and their user interface
[Wingstedt93].

Bern et al address the needs of application developers in describing a first prototype
implementation of the Tools applied in three different applications [Bern93]. The reader that
is unfamiliar with the Intuitive Project is referred to these reports.

The purpose of this document is to further investigate application developer's requirernents
on tools and methods for developing multimedia information retrieval applications.

An Intuitive application is largely based on the conceptual model of business information,
the physical structure of databases containing the business information and mapping
between conceptual model and the database structure. In addition to this structural
information, graphical definitions for the end user interface is needed.

These two types of information together, the structural and the graphical, are called
metadata. Metadata is specified and entered in the dictionary by the application designer
when creating or maintaining an Intuitive application. The process of creating an Intuitive
application is referred in this paper as application design process.

To support the application designer in creating Intuitive applications in an efficient and
flexible manner, a tool for creation and management of metadata has to be developed in the
Intuitive project. This tool for the application design process, called Designer Tool, is
described in this document.

A first prototype version of the Designer tool has been developed during the analysis and
specification of application development support. This paper gives, in addition to the
Designer tool functional requirements, also a short description of the process of Intuitive

•

application design. The application design process is exemplified with screens dumps from
the Designer tool prototype.

Chapter 2 gives an overview of the Intuitive dictionary as it is currently specified. The
dictionary is the designer too1's only connection to the rest of the Intuitive environment.
The Designer Tools sole purpose is actually to populate and maintain the Intuitive
dictionary with metadata defining an Intuitive application.

Chapter 3 gives the functional requirements that the Designer tool should meet. These
requirements are basically derived from needs arising during the application design process
but also from some of the implications of functionality in Intuitive's information retrieval
toois. For instance, if the Selector tool [Wingstedt93] will have to support pre-defined
queries (i.e. standard reports), then the Designer tool should support specification of pre-
defined queries and put them inta the dictionary and available for the Selector.

Chapter 4 describes the application design process at a rather generallevel. Nevertheless,
this chapter still gives a good overview of the entire design process and exemplifies the
usage of the Designer tool as design process support. Chapter 5 outlines our future work.

Finally, Chapter 6 gives a short summary of this paper and same conclusions from work
with Designer tool specification and prototype development.

2 . The Intuitive Dictionary

When discussing metadata, we distinguish between the structural information and the
graphical information. The structural information describes how tables and columns in a
relational database or objects in text or picture databases are related to entities, attributes and
relationships in the conceptual model. The graphical information is about the visual
representation of the conceptual model. The conceptual model may have several visual
representations showing various views to the model. Views form the users' "graphical
query environment" and are normally adapted to the information needs in specific end user
tasks.

The graphical information mainly specifies the layout and appearance of views, entities,
attributes and relationships.

Figure 2.1 shows a conceptual model of the Intuitive Dictionary containing the metadata.

The majority of all information stored in the dictionary is inserted during the design phase
of end user application development. Correctness, consistency and completeness of the
information stored in the dictionary is probably the most significant factor that determines
the robustness and quality of an end user application. Therefore, the tool support for
populating and analysing the dictionary is crucial in application design and maintenance.

[datTse) ~has--{ view J. 1
b I has belongsTo
e ongsTo has ~ invers

$able enlily t0.-l re~,on t-fm
from ~

definedBy

tor
rel Det

belongsTo

basedOn detinedBy is

[attr~ef "(' { d~at~e]

canHave canHave

/
[valueSet J "l rule]

definedBy

Figure 2.1. The structure of the Intuitive Dictionary

•

Objects in the dictionary are various types of specifications constituting an end user
application. Figure 2.1 shows the basic specification objects and relationships between
them. For example, the figure states that entities have attributes of certain data types.
Attributes are defined by attribute definitions (the attrDef object) which in tum are based on
columns belonging to tabIes in a database.

The dictionary structure as shown in the figure 2.1 does not take heterogeneous multi-
media databases inta consideration.

3 . FunctionaI Requirements on the Designer TooI

The Designer Tool will support the application designer in tailoring an Intuitive application
to meet both the end user requirements [Rosengren 93d] and requirements originating from
the structure of existing corporate databases to which the Intuitive application will act as a
user interface. These requirements are covered by following six Designer Tool tasks:

. 1. Create and manage Intuitive specifications of the physical structure
(database schema) of corporate databases.

2. Support creation of conceptual models and views describing the
structure and contents of databases in terms of business concepts.

3 o Manage and present information about mappings between the physical
database structure (tables, fields, relationships) and the conceptual model
(entities, attributes, relations).

4. Support specification of end user information and interaction support,
e.g. entity and attribute definitions, explanations and rules that restrict
and validate attribute values.

5. Support the design of the visual appearance of the conceptual model and
its views.

6. Support specification of predefined queries.

End user support information mentioned in item 4 above provides help and guidance for
end users and also prevents them from making mistakes. There are three kinds of user
support information:

Textual descriptions of entities, attributes and relationships.

Intuitive data types and value sets of attributes.

Definition of rules that constrain attribute values and instance
relationships.

3.1. Definition of the physical database structure

An Intuitive application's physical database structure is specified as a set of databases and
tables in those databaseso Each table in tum is specified as a set of columns with column
data type specifications.

The database specifications serve two purposes. Firstly, it is used by the CQL (Conceptual
Query Language) translator to enable translation during translation of queries expressed in
CQL into the CUlTentdatabase managers' native query language (eogoSQL) [Rosengren
93e]. Secondly, it serves as a natural starting point for generation of the conceptual model,
since the tables and columns in a database often correspond to entities and attributes in the
conceptual model.

•

The Designer tool must support specification of databases with tables and columns. The
lowest level of database specification support in the Designer tool is allowing an application
designer to enter the specifications manually. A preferable, but not always possible,
approach is of course automatic generation of database definitions using database schema
definition produced by a database manager or database design tool. The Designer tool
should support both manual definitions and automatic generation from imported database
schemes. The Designer tool should at least be able to import and interpret database
defInitions expresses in SQL ("create table" statements).

3.2. Creating and managing conceptual descriptions

Creation of the conceptual model may start with a more or less automated generation of a
prelirninary model from the database schema as already described above. After that the
Designer Tool should support the application designer in building a model that more closely
corresponds to the users' conception of the information stored in the database. This can be
done by allowing the designer to construct entities from table defInitions. Entities may also
be a result from combining or splitting tables motivated by the need to hide the physical
structure motivated by technical considerations. Entities, attributes, relationships and
attribute data types generated from the database schema are replaced with appropriate
naturallanguage terms from the current business domain.

When the entire conceptual model is created, the Designer Tool should support creation of
various views to the conceptual model. The views may represent parts of the entire model
or show selected amounts of information at various detail and abstraction leveis.

The entire conceptual model cannot nonnally be automatically generated from
corresponding database defInitions. This is because of the limitations in native database
manager's expressiveness and lack of appropriate data types. Especially multi-media data is
not weIl supported by the data types in today's database managers. Pictures, document
images and video data are often stored in separate fIles referred to from table fields or in
binary fields without information of the actual type of data. The knowledge and
functionality necessary to manage multi-media data is instead included in the application.
programs interfacing to the database managers. Accordingly, it will often be the case that
the application designer must manually specify the appropriate conceptual data types (e.g.
picture or video) and specify how the Intuitive system will have to manage these data when
obtained in answers to queries.

3.3. Mappings between the physical and the conceptual layers

The Designer Tool must create and keep track of mappings between the database schema
and the conceptual model since the mapping information is necessary for CQL translation.
There are two kinds of mapping information to be created and maintained:

Mappings between table columns and entity attributes. An attribute is defined as an
arithmetic expression of one or more database fields or constants.

Mapping between entity relationships and table relationships. An entity relationship is
derived from database joins between tables which the inval ved entities are based on.

An additional requirement on the mappings information is that the origin of entities and the
type of resource it represents must be registered. This is needed to allow the CQL translator
formulate correct database queries in appropriate query languages.

The attribute data type should be easy to understand for the end users. Therefore, column
data types should be mapped into more conceptual and expressive attribute data types. If
the initial conceptual model is automatically generated from the database schema
definitions, a default translation from column data types to attribute data types occurs (e.g.
string to Text, char[lO] to Text with max size 10, double to Number etc.).

When no appropriate attribute data types are available during attribute definition or re-
definition, the Designer tool must allow definition of new attribute data types. An example
could be when the entity "Person" has an attribute "Photo" . Because of technical reasons,
underlying table column does not contain the picture itself but merely refers to a file
containing a picture. Since the file name is just a string, the column data type probably will
be string. When mapping the column to an attribute, the application designer defines a new
conceptual data type "Picture" for the "Photo" attribute and specifies the possible picture
formats and eventually also the tools that can be used to display the picture.

The attribute data type definitions may include specification of valid attribute values as
value sets or rules expressing the conditions the attribute values must meet. Value sets and
rules are used to allow end users to choose among possible values or prevent them from
enter incorrect or inconsistent values.

It is desirable that the Designer Tool also be able to detect and prevent mappings that cause
ambiguities that the CQL translator may not be able to solve (correct SQL generation
requires a unique mapping from the conceptual model to the database schema). Before sueh
support can be implemented in the Designer tool there are, however, both theoretical and
practical problems to be solved when the tables are split and combined into entities and
when attributes are defined as numerieal or logieal expressions including eolumns, constant
values and values of other attributes.

3.4. Design of applications' visual interfaces

Design of an applieation's visual interfaees consists mainly of specifying layout and visual
symbols (ieons, bitmaps, pictures, labels etc.) that will be used to represent entities,
relationships and views. A visual symbol is a graphical object that is used to represent an
entity or a relationship in a view or a view in an other view. An entity may have several
alternative visualisations in different views. The Designer tool should allow an easy way to
connect and modify existing connections visual symbol to these elements.

3.5. Specification of predefined queries

The functional requirements considering specification of predefined queries is not
established yet why we refrain from specifying corresponding tool support. We believe
however, that predefined queries largely can be supported by regarding them as a special
form of restricted views, i.e. views with restricted entity attribute set and pre-set values or
value eonstraints for some attributes.

4 . The Design Process

The design process is here presented as a series of consecutive steps. The entire design
process does not proceed as single sequence of these step explicitly in given order. There
may be several paraliei sequences each focusing on its own set of design objects.
Sequences may arise during the process and they may join for result integration. A normal
design sequence iterates through the steps several times, and in any step new knowledge,
problems that arise or new ideas may motivate a jump to an earlier step. The order of the
design steps for a given design object or set of design objects is still motivated since it is
the logical causalorder given by the information needs in each step. Results from one step
are needed in later steps. This also implies that a jump to an earlier step for modifications
may make it necessary to re-do all the following steps and make changes reflecting the
modifications.

Normally, an Intuitive application is designed as a high-levet visual query interface to

Business

Business code
Name
Type

Project

Name
Definition
PRoject type
Sales code
Start date
End date
Comments

contains

addresses

opera tes in

Company

Company ID
Name

addresses

has been sent to

Sales Campaign

Subject
Definition
Name
Start datc
End date
Result

con tains

Letter

Subject
Letter type
Date sent

Letter
Imal!c

Key words
Page nr

External
Letter

Subject
Letter type
Date sent

Figure 4.1. An Example Conceptual model of business information.

•

Business

business_code *
name
typc

Project

projecUd *
(company_id)
name
definition
type
sales_code
start date
end date
comments

H4-{v)-- addresses

Company

addresscs

Campaign

campaign_id *
(company_id)
subject
definition
name
starcdate
end_date
result

contains

o

Letter

lellecid *
(projecUd)
subject
type
date_sent

Letter
Image

image_id *
(lellcrjd)
key_words
pagcnr

.-.• v

senCto

has

contains

Ext_letter

lellecid *
(campaign_id)
(company_id)
subject
typc
date sent

Figure 4.2. Data model describing the physical database structure in a relational
database.

existing corporate databases [Bern93]. Sometimes, however, the application database will
be designed as an initial activity or in paraBel to design of the Intuitive application. The
Intuitive development system is not intended to be used for database design, since there are
lot of advanced database design tools for practicallyall existing database managers.

In the following we shortly describe the Intuitive application design process using the
Designer tooL The process descriptions are exemplified with screen dumps from the first
functional prototype of the Designer Tool implemented in Visual Basic.

1. Analyse the business information structure in ca-operation with users and domain
experts and construct a conceptual model of the business information. It is preferable to
create a conceptual model of the business information. Figure 4.1 shows an examp1e of
how a conceptual model from this step may look like.

2. If the needed databases do not exist, design a new database based on the results from
business analysis using a suitable database design tooL Observe that the database
design does not always clasely reflect the conceptual model because of requirements of
technical nature (data security, efficiency, database architecture etc.). Figure 4.2 shows
a data model for business information as modelled in figure 4.1.

•

3. Enter the physical database definitions into the Designer too l manually or by importing
database schema definitions.

4. Enter the entire conceptual model of the business information inta the Designer too l. An
initial model can be generated automatically using the physical database definitions as a
starting point, and then modifying to correspond the users' view on the business
information as expressed in the conceptual model from step 1. The model can also be
constructed by manually entering its content and how it is mapped to the physical
database structure.

An other important activity integrated inta model creation is specification of end user
interaction support. This support consists of descriptions and explanations of entities,
attributes and relationships. End user support also incIudes attribute data types (as
opposed to table column data types) and value sets and rules that restrict attribute values
and hel p end users to see and enter valid attribute values in queries.

Figure 4.4 shows an entity definition dialogue that can be invoked from the table
definition dialogue as shown in the figure 4.3 (if the option "Generate - Manual
definition" is seleeted) or by double-clicking on an entity in the model graph. Figure
4.5 shows an initial model graph as generated by the Designer from table definitions.
Observe that no relationships between entities exist in the initial model, since the table
j'oin information cannot be specified during table definitions. When relationships are
drawn in the conceptual model, the Designer tool invokes a Relationship Definition
dialogue where relationships are defined as joins between tables which the in vol ved
entities are based as illustrated in figure 4.6. During entity and attribute definition, the
designer can also invoke the data type definition dialogue, see figure 4.7.

Figure 4.3. A Designer tool dialogue for manual definition of database
tabIes.

•

Figure 4.4. Entity definition dialogue. The entity "Company" is in this case automatically
from a corresponding table definition.

Figure 4.5. An initial conceptual model as generated by Designer tool. No relationships
exist yet between entities, since they have to be defined manually.

Figure 4.6. Relationship definition dialogue. The reIationship is defined by giving the
corresponding columns in the tabIesfrom which the entities originate.

Figure 4.7. Data type definition diaIogue. Data types and value setsfor data types are
definedfor entity attributes to pro vide user interaction support and vaIidation attribute

vaIues.

5. Refine the modellayout if necessary.

6. Analyse the users information needs in their working tasks and group tasks with similar
information needs.

•

Figure 4.8. The conceptual mode! as it appears after definition of relationships and som e
layout work.

Figure 4.9. A view containing a part of the conceptual modet.

7. Design views to the entire conceptuaI model so that each view cover the information
needs of a specific user task or task group. This step should be performed with great
care and in cIose co-operation with the users. A weIl designed set of views is probably
the most important factar that makes the user interaction with an Intuitive application
easy and efficient, thereby improving the user productivity. Having too large views
cluttered with information inhibits users' perception of and navigation in presented
information. Having too many small views makes it difficult to find the right view and

also restrict the user's possibilities to formulate queries expressing unexpected or
uneamman information needs.

8. Queries expected or known already during the design phase are specified as
predefined queries in the Designer tool. However, frequency of query usage
should be high enough to motivate a predefined query. An unneeessarily large
set of queries does not ease the users' interaction with an Intuitive applieation,
especially if many of the queries are unclear, inconsistently named or rarely
used. This is also true for ordinary views.

Note: The eurrently available set of Intuitive tool prototypes [Wingstedt93]
does not support predefined queries. Neither does the Designer tool support
speeifieation of forms or predefined queries. Aecordingly, this step eannot be
performed using the existing tool prototypes.

9. Speeify the visual appearance of the elements of views and predefined
queries. Entities may be presented most intuitively as ieons or pictures instead
of plain boxes with text. For example, an ieon or a picture of a ear may be a
better visualisatian of entity "Car" than a labelled rectangle among ten other
labelled reetangles for other entities.

10. Install, test and verify the Intuitive applieation. Use real business data
whenever possible. Re-do earlier steps to make the necessary modifications
stemming from knowledge gained during testing and verifying.

Since the last step may initiate any other step at any time, it actually covers the maintenance
of an Intuitive application, i.e. further development, enhancement or modifications to
reflect changes in business information needs, databases, user tasks or in visual interface
requirements.

Figure 4.10. A view with an alternative visualisation of entities.

•

5 . Future Work

The Designer tool will be subject to enhancements and refinements. We do not expect any
significant changes in the general tool architecture, rather minor modifications because of
problems encountered and additional functional requirements. The functional specification
is largely derived from support needed in the design process, and because the design
process will continue to evolve as we gain more knowledge and experience, the needs and
tool support requirements will change. We believe however, that there will not be any
radical changes in the functional requirements.

Not only the design process alone put requirements on the Designer tool. Other Intuitive
tools need certain types of information that must be provided by the designer tool. Changed
or extended functionality in other Intuitive tools may cause additional functional
requirements in the Designer Tool. For example, we do not yet exactly know what kind of
presentation information in the dictionary will be necessary for the general Presenter tool,
especially when it comes to data composed of voice, video, pictures, text etc. What we do
know is that if some of that presentation information is known at design time, the Designer
tool should be able to handle it.

The current prototype does not meet all of the functional requirements. The next Designer
tool version will be extended with support for import of database schemes and generation
of table and column definitions. Also, the support for dictionary analys is and design
maintenance should be improved. The current version does not allow specification of forms
and predefined queries, which the next version should be able to do.

To conclude the expected work on the designer tool to be carried out in the future, we
summarise it as follows:

Better conversion between column data types and attribute data types.

Import of database schemes, at least in standard SQL.

Implementation of support for predefined queries (eventually also forms)
if the functional requirements will be established.

Addition of important dictionary analysis functions.

Improvements in the interaction interface (drawing, layout of graphical
objects, more efficient and flexible dialogues and forms).

Conversion from Visual Basic to C++ using existing dass libraries for
applications development.

There are at least two wild cards: the functionality needed for specification of presentation
information for the general Presenter tool and specification of moving pictures and voice
data. We do not expect at the principal problems with these issues will be solved soon
enough to allow implementation of any advanced support during the next six months.

•

6 • Summary

In this paper we have described and discussed the functional requirements on the tool
support for the process of developing Intuitive applications. The functional requirements
can be sununarised as follows

Create and manage description of the physical structure (database
schema) of corporate databases.

Support creation of conceptual models and views describing the structure
and contents of databases in terms of business concepts.

Manage and present information about mappings between the physical
database structure (tables, fields, relationships) and the conceptual model
(entities, attributes, relations).

Support specification of end user information and interaction support,
e.g. entity and attribute definitions, explanations and rules that restrict
and validate attribute values.

Support the design of the visual appearance of the conceptual model and
its views.

Support specification of predefined queries.

A first working prototype that meets the most of these requirements has been developed at
SISU, except support for predefined queries. Work remains however to make the Designer
tool a complete and fully functional tool for application design and maintenance. Practical
usage of the Designer tool has been demonstrated in this paper in the context of describing
the application design process. The work to be carried out during the next six months can
be sununarised according to the following list.

Better conversion between colurnn data types and attribute data types.

Provided that the functional requirements will be established in time
during the period, implementation of support for canned queries.

Addition of important dictionary analysis functions.

Enhancing the interaction interface of the Designer tool.

Moving from the programming environment during the first prototype
phase (Visual Basic) to C++ and employing existing software
components and advanced dass libraries.

•

7. Acknowledgements

The Intuitive project is sponsored by NUTEK, Telia and Sweden Post.

Significant parts of Designer Tool prototype were developed by Hans Hagedahl, Sweden
Post.

8 . References

[Bern93]

[Rosengren93 a]

[Rosengren93b]

[Rosengren93c]

[Rosengren93d]

[Rosengren93e]

[Wingstedt93]

M. Bern, P. Kool, P. Rosengren, U. Wingstedt,
"Application Design with the Intuitive Tools - two case
studies", SISU Report No. 5.

P. Rosengren, U. Wingstedt, M. Bern, P. Kool, "ER-
Based Information Retrieval In a Mixed Database'
Environment", Proceedings of the 12:th International
Conference of Entity Relationship Approach, 1993 (to be
published).

P. Rosengren, U. Wingstedt, M. Bern, P. Kool, "A
Tools Oriented Visual Interface for Multimedia
Databases", NDA'93, International Symposium on Next
Generation Database Systems and Their Applications,
Japan September 1993.

P. Rosengren, U. Wingstedt, P. Kool, M. Bern,
"Accessing Information in Large Corporate Databases -
The Intuitive Approach", SISU Report No. 3.

P. Rosengren, "Applications of a Multimedia Retrieval
Information System - five case studies", SISU Document
10.

P. Rosengren, "CQL- A query language for retrieving
multimedia information", SISU Document 12.

U. Wingstedt, M. Bern, P. Kool, P. Rosengren,
"Intuitive Tools for Information Retrieval - Requirements
and Architecture", SISU Repor! No. 4.

•

SVENSKA INSTITUTET FÖR SYSTEMUTVECKLING
-ISI5UI-

Electrum 212, 164 40 Kista
Isafjordsgatan 26

Telefon 08-752 1600 Telefax 08-752 68 00

	page1
	images
	image1
	image2

	page2
	titles
	•
	1 . Introduction

	page3
	titles
	•

	page4
	titles
	2 . The Intuitive Dictionary
	/
	"
]

	images
	image1
	image2
	image3

	page5
	titles
	•

	page6
	titles
	3 . FunctionaI Requirements on the Designer TooI
	3.1. Definition of the physical database structure

	page7
	titles
	3.2. Creating and managing conceptual descriptions
	3.3. Mappings between the physical and the conceptual layers

	page8
	titles
	3.4. Design of applications' visual interfaces
	3.5. Specification of predefined queries

	page9
	titles
	4 . The Design Process

	images
	image1
	image2
	image3

	page10
	titles
	.-

	images
	image1
	image2

	page11
	titles
	•

	images
	image1

	page12
	images
	image1
	image2

	page13
	images
	image1
	image2

	page14
	images
	image1
	image2

	page15
	images
	image1

	page16
	titles
	•
	5 . Future Work

	page17
	titles
	•
	6 • Summary

	page18
	titles
	•
	7. Acknowledgements

	page19
	titles
	8 . References

	page20
	titles
	•
	SVENSKA INSTITUTET FÖR SYSTEMUTVECKLING
	Telefon 08-752 1600 Telefax 08-752 68 00

