ErrexTIV I'T

RAPPORT NR 4 — MARS 1994

CONCEPTS AND NOTATIONS FOR
OPEN-EDI SCENARIOS

Matts Ablsén

SVENSKA INSTITUTET FOR S YSTEMUTVECKLING

= s

SISU




SISU bedriver ett program fér forskning och
utveckling inom informationsteknologins tillimpnings-
omraden — Effektiv IT. Grunden till programmet 4r en
forstudie inom detta omrade som SISU genomfort pa
uppdrag av Naringsdepartementet och NUTEK.
Forskningen koncentreras till omriden som har stor
ekonomisk relevans f6r svenskt niringsliv och
forvaltning.

Malet med programmet ar att svenskt niringsliv och
férvaltning ska kunna anvinda resultaten for att:

* Effektivare styra och utveckla verksamheter

* Minska kostnaderna fér informationsférsérjningen

* Battre utnyttja befintliga informationssystem

* Anvinda bittre virderings- och kalkyleringsprinciper
* Minska ledtiderna vid inférande av nya system

e Forbattra intern och extern kommunikation

Arbetet under f6rsta ret drivs inom fem forsknings-
omraden: Systemutvecklingens ledtider och kvalitet,
Systemarvet, Affarskommunikation, IT:s ekonomi och
management samt Verktyg for verksambetsutveckling.



Concepts and Notations for Open-edi Scenarios

Matts Ahlsén
Swedish Institute for Systems Development!
Electrum 212, 164 40 Kista,
Sweden
Internet:

Hannu Pelkonen
Finnish Data Communication Association
Salomonkatu 17 A
FIN-00100 Helsinki
Finland
X.400: G=Hannu; S=Pelkonen; O=sty; A=Elisa; C=FI

Sverre Walseth
Norwegian Telecom
Research department
PB 83, N-2007 Kjeller
Norway
X.400: G=Sverre, S=Walseth; O=Tele; OU=tf; A=Telepost; C=NO

February 1994

Abstract

This report discusses the modelling and representation of
Open-edi scenarios. A reference model for Open-edi is
being proposed by ISO. A central concept in this model is
that of a scenario, which is intended to model business
processes based on public standards and involving multiple
autonomous parties. This report introduces the Open-edi
reference model and provides a classification of alternative
description techniques to be used in the framework of
Open-edi for scenario description. An example of a scenario
description is given, based on some of these notations.

1 This work is sponsored by the Effective IT programme at SISU
P % progr


mailto:matts@sisu.se

Contents

1. Introduction

2. The Open-edi Reference Model
2.1 Rationale for Open-edi
2.2 The Open-edi Reference Model
2.3 Intended use and Users of the Standards
2.4 Requirements on FDTs used to model Open-edi Scenarios

2.5 Introduction to an Open-edi Scenario

3. Notations
3.1 Characterisation

3.2 Example Notations

4. A Scenario Description
4.1 Scenario Objectives
4.2 Scenario Attributes
4.3 Information Parcel Model
4.4 Role Model
4.5 Usage Case

5. Considering Methods for Open-edi
6. Concluding Remarks

7. References



1. Introduction

Open-edi is the common concept for business systems interoperability, which is
to be based on a new generation of public standards. These are intended to
cover aspects of interoperability not supported by today's standards, such as
the roles and the behaviour of a number of autonomous communicating parties.
Today's message oriented standards (e.g. EDIFACT) will be subsumed by such
Open-edi standards. A reference model for Open-edi is currently being defined
by ISO and is intended to serve as the common conceptual framework for the
development of such standards. This reference model will be proposed as an
international standard in itself, and is in this sense similar in aim to the OSI
reference model although different in scope. A central concept in the Open-edi
reference model is the scenario, intended to capture aspects of roles, behaviour
and information requirements.

The aim of this report is to introduce the reference model and to review
description techniques, or notations, suitable for the specification of scenarios.
We give a brief description of the reference model as it has been defined thus
far, explaining its objectives and basic concepts. We then give a general
characterisation of notations, followed by a classification and listing of some
notations that can be considered candidates for use in scenario descriptions.
This is followed by an example of a scenario description.

A design method for Open-edi scenarios should provide alternative description
techniques, but should also recommend suitable notations for different parts of
a scenario. We do not discuss in depth methodological issues involved in
designing scenarios or in applying specific notations, and our selection of
candidate notations is based on an intuitive judgement of their suitability of
representing the central concepts that define scenarios. The report does not
cover all existing notations, but lists representative examples of notations from
different application domains. In the sequel of this document we will use the
word scenario in the meaning of an Open-edi scenario.

It is relevant to consider how Open-edi relates to other aspects of inter-
operability, both in terms of inter- and intra-organisational information
systems. The scenario concept is intended to provide a model for the
interactions between a set of autonomous business participants, and as such it
should not impose any structure or otherwise constrain an organisation’s
internal business processes or their IT-support. In this sense the Open-edi
scenario can be seen as a co-operative processing model on the inter-
organisational level. The prevailing approach to inter-organisational
communication is focused on exchange of computer stored documents.
However, standards like EDIFACT fail to deal with the co-ordination of
activities as well as the implied functional aspects of EDI messages, which is
one of the motives for Open-edi.

Effekziv IT — Affirskommunikation
Svenska Institutet for Systemutveckling 1



Previous approaches to business process automation and office information
systems have been dominated by task and flow oriented models, where the co-
ordination of procedures and form flows have been in focus. These approaches
primarily support intra-organisational processes, with an implicit assumption
of global control (although processes and information can be distributed). The
application domain of workflow management represents a further
development of these approaches. A workflow implements a process by
synchronising and relating information, activities and communication [Schal
and Zeller 1993]. A number of products for computer supported workflow are
available today. If we regard Open-edi as a means for co-ordinating the
business processes of autonomous organisations, then scenarios could compare
to a form of inter-organisational workflow descriptions.

Another important issue in this context is the need for a consensus on the
concept of architecture for information systems in support of interoperability
and decentralisation. Demarcation of local systems and autonomy [Veijalainen
1992] are important aspects of architecture, as is the provision of a component
oriented approach to information systems assembly. A problem is the lack of a
coherent framework for architecture definitions (concepts, terminology,
components, etc). As an example, the notion of "client-server architecture" may
have many different meanings and is insufficient for capturing the different
aspects of decentralised systems. Few development methods provide support
for decentralised information systems based on a well defined concept of
architecture, although most methods or frameworks for information systems
design include an implicit assumption of architecture [Goldkuhl, Pettersson et
al. 1993]. The reference model for Open-edi can be seen as a form architecture
which addresses some of these issues.

Finally, we should note that Open-edi is not a method per se, but a conceptual
and technical framework in which different design methods and standards will
be employed.

Effektiv IT — Afférskommunikation
2 Svenska Institutet for Systemutveckling



2. The Open-edi Reference Model

2.1 Rationale for Open-edi

The economic advantages of EDI are widely recognised. However, the costs for
setting up an EDI relationship are still very high because of the need for a
detailed bilateral agreement between the involved business partners and for the
necessary technical agreements. Some of the issues which the participants
engaged in EDI have to agree upon are:

» Syntax of information to be exchanged

 Information content (messages including versions and subsets of messages)
» Communication protocols

¢ Security requirements

e Legal considerations

e Business commitments as a consequence of the message exchange.

This situation has led to islands of automation within industry sectors or
smaller projects. Establishing EDI relationships between different closed user
groups requires a considerable effort. Therefore, most of the successful EDI
implementations have been realised in long-term partnerships. EDI links in
short-term partnerships are rarely realised, as the costs of the formation of such
an agreement are too high.

Open-edi is an initiative that will lower these barriers by introducing standard
business scenarios that can be employed without prior agreement. This enables
organisations to benefit from EDI in short term relationships as well. As these
scenarios will be available to organisations within all industry sectors, Open-edi
will provide the necessary means for implementing EDI on a cross-sectorial
level.

The Open-edi standardisation work is performed by ISO/IEC JTC1. JTCI1
established a working group called SWG-EDI (Special Working Group on EDI)
in 1989. SWG-EDI was disbanded in 1981 after it had finalised its work on the
Open-edi Conceptual Model [SWG-EDI 1991]. According to a recommendation
of SWG-EDI a new working group was established in 1991. This group was
called ISO/IEC JTC1/WG3 (Open-edi). WG3 got the status of a Subcommittee
(SC 30) in February, 1994. The first task of WG3 is to create an Open-edi
Reference Model which will be the basis for Open-edi standardisation
[ISO/IEC/JTC1/WG3 1994]. The description in this chapter is based on the
proposal from this group. However, the views and ideas introduced in the rest
of this report represent the opinions of the authors of this report, and not
necessarily those of WG3.

Effektiv IT — Affdrskommunikation
Svenska Institutet for Systemutveckling 3



2.2 The Open-edi Reference Model

The Open-edi Reference Model provides a reference framework for the
identification, development, and co-ordination of Open-edi standards. This
framework addresses two perspectives of the Open-edi environment, a
business perspective and a technical perspective. The application of each view
allows the identification of generic modelling capabilities which provides the
means for standardisation in each perspective.

Figure 2.1 gives an overview over the Open-edi Reference Model and its
surroundings, while it also identifies the problem areas for the two views
together with the main concepts.

Open-edi Reference Model Boundary

B ) s
Business ]
g Operational Business Rules and T
11 View Semantics g
N .
E Results in N
S p ) T . —_— .
= B Support Require =
o | Viewed as Co‘n_‘lplymﬂ‘ A
C
E Functional Functional Capabilities R
S Service and Support
S View Services D
S 8
S

used
to
implement Conform
to

Open-edi Systems

Figure 2.1: Open-edi environment

By separating the business aspects of Open-edi from the information
technology aspects, the Open-edi reference model and the associated standards
provide flexibility to accommodate changes in the Information Technology and
the user demands without impacting the Open-edi standards related to
business aspects of Open-edi.

Any information system which behaves in accordance with the Open-edi
standards can be considered to be an Open-edi System.

Effektiv IT — Affdrskommunikation
4 Svenska Institutet fir Systermutveckling



BUSINESS OPERATIONAL VIEW FUNCTIONAL SERVICE VIEW

(BOV) (FsY)

Deals with: ] Desls with:

- Business problems - Information technology problems
- semantics = data representation (syntaxes)
- business agreement - support services

- business rules : : = communication

- Business requirements on the E
support services £

Concepts: Conce pts:
* scenario = Open-edi Support Services (0OeSS)
- rdes

« information parcels
* scenario attributes ¢

¢ Phgege ..t

Figure 2.2: Problem areas and main concepts of the two views.

2.2.1 The Business Operational View (BOV)

The BOV addresses the business aspects of interoperability between the Open-
edi systems, including business conventions, agreements and rules among
business participants. The BOV related standards provide the tools for a formal
business description of the external behaviour of business participants, as seen
by other participants, in view of achieving a business goal. As such, the BOV
related standards shall provide a means for capturing the static as well as the
dynamic requirements.

The BOV related standards provide a specification of how to model an Open-
edi scenario. Included in this specification is the modelling standard (including
Formal Description Techniques — FDTs) to be used.

The BOV related standards shall provide for the possibility of defining Open-
edi scenarios with different levels of granularity.

Open-edi scenarios cover the following aspects: entities, information units, and
rules. These aspects are expressed using the modelling constructs: Scenario
attributes, roles and information parcels (Figure 2.3).

Effektiv IT — Affdrskommunikation
Svenska Institutet for Systemutveckling 5



Figure 2.3: The relationship between the scenario concepts

A role is an abstract autonomous decision making entity in an Open-edi
scenario, used to model the external allowable behaviour of an autonomous
business participant. A role is used to identify a business activity independent
of the actual participant, i.e. a participant may execute one or more roles within
a given scenario. The behaviour of a role is expressed through an FDT. This
FDT is specified in the BOV related standards.

An Information parcel (IP) is the formal description of the semantics of the
information related to roles in an Open-edi scenario. It is used to model the
business information that can be exchanged among roles.

Scenario attributes are the formal specification of information, relevant to an
Open-edi scenario which is neither specific to individual roles nor information
parcels.

2.2.2 The Functional Service View (FSV)

The Functional Service View addresses the information technology aspects of
interoperability between the Open-edi Systems. Interoperability implies that
two or more Open-edi Systems, conforming to the standards related to the FSV,
are able to co-operate and support the execution of Business processes. Any
private agreement between parties, other than the decision to engage in Open-
edi transactions, is not necessary. The FSV identifies the entities which are
generic functional capabilities of Open-EDI systems. These functional
capabilities may be distributed among several organisations (by delegation
from the concerned business participants).

An Open-edi Support Service (OeSS) is an abstract entity used in the FSV to
model a set of generic functional capabilities, needed to support the execution
of an Open-edi transaction.

An Information Management Domain (IMD) is an entity that groups at least
one OeSS and may include role specification(s) and decision making. The
purpose of IMDs is to instantiate a real operational configuration able to
support Open-edi transactions between Open-edi systems.

Effektiv IT — Afférskommunikation
6 Svenska Institutet for Systemutveckling



2.3 Intended use and Users of the Standards

In the real world cost effective implementation of EDI requires co-operation
from different types of experts, mainly business users aided by information
analysts and information technology specialists including telecommunication
experts. The Open-edi reference model facilitates this co-operation by
providing two sets of standards, each set being used by a class of experts.

The Open-edi Reference Model will be used by the various standard bodies to
develop standards which support both the Business Operational View and the
Functional Service View. The potential exists for these standards to come from
one or more different standards groups. In addition to using the Open-edi
Reference Model, the standards bodies will also reference other models or
standards as required.

Generally the standards related to the Business Operational View will be
developed and used by business representatives or users. The business
representatives are those who understand the operating aspects of a business
domain, business or enterprise. Once Business Operational View related
standards are in place, user groups will use them to produce agreed upon
models which represent their business processes. These agreed upon models
will then be registered with an Open-edi registration authority.

The standards related to the Functional Service View will be developed by the
information technology (IT) experts. The information technology experts are
those within an enterprise who understand the information technology and use
this technology to design and build systems which support the business needs.
The standards developed to support the Functional Service View shall take into
account the standards developed to support the Business Operational View.

Figure 2.4 shows the content and the users of the different Open-edi standards.

STAND-
RDS Open-edi BOV FSV
Referance Model related standards related standards
CONTENT | Framrework for - Modeling stardarc - List of the OeSS 2
coordination of 1or Open-edi scenario - Description of their external g
stendards - Procedures for irtroducing behaviowr 2
Wpdating Operredi scenario - |dertification of their mutal
inthe repositary coopetation
- Procedures for Infor mation
Parcel repaository
- Catalogue of requiremerts an
CeSE<
- Procedures for Rde repository
USERS Stau?dardizaﬁon Business Process TT-experts
bodies Designets

Figure 2.4: Content and users of Open—edi standards

Effektiv IT — Affiirskommunikation

Svenska Institutet for Systemutveckling



2.4 Requirements on FDTs used to model Open-edi Scenarios

FDTs are required to express an Open-edi Scenario in an unambiguous way.
This is essential for the reusability and cross-sectorial use of Open-edi
Scenarios.

Open-edi Scenarios are expressed through the constructs of roles, information
parcels and scenario attributes. The constructs cover different aspects of a
business process and different requirements for the FDTs used to express them.
Together they form an unambiguous picture of a business process.

2.4.1 Requirements for FDTs used to express a Role

A role within an Open-edi scenario shall express the external behaviour of a
participant in a business process. An FDT must be able to express the following
properties of a role:

» The reception of information parcels (IP) from other roles
» The submission of IPs to other roles

» Identification of which roles IPs are exchanged between

» The sequencing of IP exchanges within a role

» The result of any internal event or decision which affects the external
behaviour of a role

» The state of the role at any time

2.4.2 Requirements for FDTs used to express Information Parcels

An information parcel is used to model the business information which is
exchanged between roles. An FDT must be able to express the following
properties of an information parcel:

» The structure of the information parcel
» The content of constituent components of an information parcel

* An identity for the information parcel which at least is unique within a
scenario

» Objective or purpose

Effektiv IT — Affdrskommunikation
8 Svenska Institutet fér Systemurveckling



2.4.3 Requirements for FDTs used to express Scenario Attributes

Scenario attributes are the formal specification of information relevant to an
Open-edi scenario as a whole. An FDT must be able to express the following
properties of scenario attributes:

¢ Information model of all IPs
e Overall role relationships
» Registration information

» Reference tolaws and regulation that applies to the scenario

2.5 Introduction to an Open-edi Scenario

A relatively simple situation from the health care sector is chosen as an
example. Let us consider the situation in which a business participant acts as a
centre or agency of acquiring organs for those that need organ transplants. The
roles to be modelled are:

» the organ requester
e the organ centre
e the organ donor

In this example only one organ requester, organ centre and organ donor is
shown, while in general several requesters and donors could be connected to
one centre. It would also be possible to extend this example to include
transporters, finance departments, banks, etc. However, the goal with an
example is an illustration, not an exhaustion.

The behaviour of the different roles of our example may briefly be described as:
The organ requester will

e Request the organ centre for organs.

e Remind the organ centre of earlier requests.

e Accept organs.

e Cancel requests (Patient died (or recovered!), or internal supply of organ).
¢ Receive refusal of request from organ centre.

The organ centre will:

¢ Receive and reply on requests for organs from the organ requester.

e Request organs from organ donor if no organ is locally available.

* Receive organs from organ donor .

 Refuse requests.

Effektiv IT — Affdrskommunikation
Svenska Institutet for Systemutveckling 9



» Cancel request towards organ donor (request cancelled by organ requester
or internal supply available).

The organ donor will:
» Receive requests for organs from the organ centre.
» Receive cancellations for earlier requests.

» Offer organs to the organ centre.

This Open-edi scenario is described in section 4, using some common descrip-
tion techniques.

Effekziv IT — Affdrskommunikation
10 Svenska Institutet for Systemutveckling



3. Notations

3.1 Characterisation

This section gives a general characterisation of notations relevant for the
description of scenarios. We are concerned with notations intended for
representing different aspects of information systems. This report is not a
survey of notations, and we do not pass judgement on individual notations. We
use notation as synonymous to (formal) description technique (FDT), formal
language, modelling language or formalism. We distinguish notations from the
general concept of model; a notation is used to express a model of some
domain!, for Open-edi the domain is that part of a business process concerned
with the interactions between business participants, and the resulting models
are called scenarios. Further, a notation does not necessarily prescribe a specific
process or method on how to arrive at a certain model. Some notations may
however, be specifically intended to support a certain method.

The application of modelling notations to the analysis and specification of
information systems falls within the area of conceptual modelling. Conceptual
modelling covers the static and dynamic (behavioural) properties as well as the
rules of the application domain. In this process a number of different notations
must generally be employed. A conceptual model should ideally capture all
these aspects, and in its most abstract sense, a scenario can be considered a
conceptual model. Different classes of conceptual models (and corresponding
notations) include: information models, process models and event models.
Some research issues and a state of the art in conceptual modelling can be
found in [Loucopoulos and Zicari 1992]. Semantic data models have been
surveyed in [Hull and King 1987; Peckham and Maryanski 1988], and a
comparative survey of diagramming techniques supported by CASE tools can
be found in [Rock-Evans and Engelien 1989].

In general, a notation may emphasise a certain modelling perspective, by
including specific symbols or language constructs for some model concept (e.g.
processes and information objects). Further, a notation could possibly be
executable; a notation can have multiple representations, such as graphs or
lexical elements; a notation may include proof procedures, by which certain
properties of a model can be verified or established. Another distinction can be
made with respect to the intended use of a notation; some notations emphasise
ease of description, e.g., in terms of notation syntax (e.g. graphs) and
structuring capabilities, whereas others emphasise formal tractability, such as
the verification of a specification.

1 Often these two concepts are used as synonyms, e.g., notations based on the ER-approach are
often collectively referred to as ER-models.

Effektiv IT — Affarskommunikation
Svenska Institutet for Systemutveckling 11



Notations which can be interpreted mechanically are called constructive. Most
general examples of these kinds of notations are programming languages, but
also several other formal descriptive techniques have this property. The
opposite are notations which are non-constructive. This type of notations do
not give an explicit model of the system being specified. The non-constructive
notations specify systems in terms of properties and invariant conditions. The
non-constructive notations usually have no mechanically derivable
implementations.

In this context a (formal) notation is understood in a broad sense to include
both simple graphical languages as well as more complex rigorously defined
formalisms. In general, notations should have the properties of, (1); promoting
abstraction, in order to be an instrument to handle complexity, and, (2);
providing preciseness in notation, so as to avoid ambiguity in interpretations
and to ease formal tractability. Given these properties, we can say that the
primary purposes of notations are, to serve as an instrument for communica-
tion, thereby being usable in a specification and design process; and to be a
basis for providing executable descriptions. Notations may of course be
supported by computerised design tools, regardless of whether the models are
executable or not.

A simple classification of some notations relevant to Open-edi can be based
on; (1) the primary modelling perspective, and; (2) on the formal properties
that make them suitable for a particular application. A classification based on
syntactical and presentation properties (e.g. graphical, lexical) is possible but
can be limited since some notations have multiple syntaxes and presentations.
Here we consider the following modelling perspectives,

- Process/state synchronisation

- Information structuring

- Activity and data flow composition
- Activity co-ordination

There are a number of notations intended for synchronisation of processes and
states, e.g. in distributed systems specification and protocol description. A
process is here understood to be a computer process. Notations have been
developed within ISO and CCITT. Languages like LOTOS, ESTELLE and SDL
[ISO/IEC 1991] which also are standards today, dominate the specification of
services in telecommunication systems. Object-oriented extensions to some of
these languages have also been proposed, e.g. an object-oriented extension of
SDL [Moller-Pederson, Belsnes et al. 1987].

Information structuring notations refer to languages designed primarily to
classify and structure information objects or concepts, in order to describe the
static structure of information systems. Typically, such languages are used both
for analysis and in design, e.g. in conceptual modelling and (data base) schema
design. There are a number of such languages based on the entity-attribute-
relationship approach. Notations for information structuring are often referred

Effektiv IT — Affarskommunikation
12 Svenska Institutet for Systemutveckling



to as conceptual (data) models, information models or semantic data models.
Whereas conceptual and information model notations are intended for analysis,
a semantic data model is more focused on design (e.g. in terms of database
structures). However, the emergence of object-oriented modelling notations
gradually lessens this distinction.

Activity and data flow formalisms include a number of extensions and varia-
tions of the well-known data flow diagrams. Their primary application is in
modelling information flows between related processes or functions. Some of
these languages also provide synchronisation primitives and specification of
constraints. Decomposition into process/function hierarchies allowing multiple
levels of abstraction is another property of these notations.

Activity co-ordination refers to the modelling of processes involving both
automated systems and human activity. The definition of roles of interacting
agents and the co-ordination of activities are central aspects, but also the
modelling of the commitments and obligations attributable to roles. Process
modelling is receiving an increased attention involving such areas as
concurrent engineering and enterprise modelling. Applications include the
modelling of software development processes [Curtis, Kellner et al. 1992], or
other co-operative design processes. Some approaches to workflow manage-
ment include such co-ordination support, notably those based on speech-acts
(se below).

Orthogonally to the above classification based on modelling perspectives we
can consider the formal basis of the notations relevant to Open-edi. A possible
distinction can be made between,

- Automata/Finite state machines
- Process Algebra

- Semantic net/Relational

- Linguistics / Speech Acts

- Rule-based /Logjic-based

Automata formalisms, such as finite state machines (FSM), are prime
candidates for distributed systems and protocol applications. Generally, in
state-oriented notations the state of the modelled system is explicit, in terms of
‘specific symbols and objects. A well-known problem with state based
formalisms is the phenomenon of "state explosion" which seriously hampers the
modelling of even moderately complex systems. The decomposition of states
into sub states is sometimes desirable, in order to avoid this (in)famous
phenomenon. However, the merits in formal tractability of these formalisms
sometimes outweigh this problem. Extensions to the basic FSM formalism have
been developed in order to alleviate the state explosion problem, e.g. the
ESTELLE and SDL standards are based on such extensions. Languages based
on finite automata or state machines exist in several variants, such as Extended
FSMs, Communicating FSMs, and State Charts[Vanslembrouck and Verdonk

Effektiv IT — Afféirskommunikation
Svenska Institutet for Systemutveckling 13



1991]. There are also a number of formalisms based on extensions of Petri Nets,
e.g. adding time and structured objects to the basic formalism. State models are
often combined with a simple form of graphical notation like Message Sequence
Charts that depict messages and processes over time. The state of the modelled
system is not explicit in these notations.

Whereas automata notations emphasise the notion of state, process algebras
focus on the interaction of the components of a system with the state implicit.
Process Algebra is the basis for formalisms that deal with the interaction and
behaviour of processes in general, and stem from the work on CSP and CCS
[Fekete 1993]. Thus languages for distributed systems and protocol design often
include elements of process algebra (e.g. LOTOS) [Bolognesi and Brinksma
1987]. These languages typically include elements for process synchronisation
in terms of signals, and sometimes also in combination with value transmission.

Semantic nets and relational formalisms dominate notations for information
modelling and structuring, generally the static structures of information
systems. We use the terms "semantic net" and "relational” here to emphasise
the common basis for such notions. Semantic net refers to the use of graphs in
the modelling of associations among concepts or objects in general, whereas
relational refers to the modelling of mappings between sets of objects based on
mathematical relations. Research and practice have led to the establishment of
general abstraction mechanisms like classification, generalisation, grouping
and aggregation, which to a varying degree are supported by current
notations. The simplicity of the underlying formalism makes such languages
good instruments for communication as well as for formal manipulation. Some
information structuring notations also support representation of a temporal
dimension as well as operations on the modelled information objects.

Recently we have seen a revival of the “linguistic” approach to model
communication in organisations and between users of information systems.
Some approaches to IS design are based on Speech Act theory [Flores, Graves et
al. 1988], and approaches to workflow analysis and description have also been
based on this theory. The speech-acts view adds a dimension of commitment
and agreement to the modelling of co-ordination and communication e.g., in
workflow. This is generally not emphasised in other approaches such as task or
flow oriented approaches to workflow management. However, this will
probably be required in Open-edi scenarios.

Rule-based or logic-based notations focus on the explicit representation of rules,
e.g., business rules in the form of derivation rules or constraints[Wangler 1993].
Rule-based formalisms can promote declarative specifications and the ability
for inferencing (derivation). Some notations are based on a subset of first order
logic but other forms of modal logics have also been suggested for use in
specifying business rules, such as deontic logics [R.J. Wieringa 1993].

The emerging object-oriented analysis and design methods generally include
several notations for different modelling perspectives. Although there is no
unified object-oriented notation, these methods combine notations to express

Effektiv IT — Affdrskommunikation
14 Svenska Institutet for Systemutveckling



object structure, object state and events, and operations on objects. We include
a brief discussion on object-oriented modelling at the end of this report.

3.2 Example Notations

For the process of specification and design of scenarios, it is conceivable that
several different notations could be used. In the review of candidate notations
some general properties can be considered:

- Primary modelling perspective (e.g. process synchronisation)

- Emphasis and modelling constructs (e.g. signals)

- Theoretical or formal basis (e.g. state machines)

- Language syntaxes used in the notation (e.g. graph symbols)

- Support for automation (e.g. design tools and machine interpretation)

- Acceptance and use (e.g. de jure or de facto standard)

- Intended user (e.g. IT designer )

The following section gives an overview of notations. The overall classification
of notations is based on their primary modelling perspective, and we briefly
comment on the other properties where appropriate. Some notations may
support several modelling perspectives. Thus an overlap between classes is
possible.

Notation

Formal basis
Modelling concepts
Languages
Automation
Acceptance

] User

Activity & Information Activity
dataflow structuring Coordination

Figure 3.1: Possibly overlapping subclasses of notations

The listing of notations is obviously not complete. It is intended as a point of
reference in the future development of the Open-edi model. The examplified
notations come from a variety of sources, representing different aims, some are
well established products, others are research prototypes.

Effektiv IT — Affdrskommunikation
Svenska Institutet for Systemutveckling 15



3.2.1 Notations for Process and State Synchronisation

Of these notations [ISO/IEC 1991], SDL and ESTELLE emanate from the tele-
communications field, whereas LOTOS is a more general specification
language. They are generally not considered for the specification of information
systems, although they in principle could be used for this.

Notation Constructs Basis Language

SDL - Specification | Processes, signals, Extended FSM. Graphic
and Design Language | pre-defined data
types,
G, 1 synchronisation
primitives,
Interaction is
supported by signal
interchange, internal
signals and shared
data.

Lexical

ESTELLE Processes, local or Extended FSM. Lexical
external signals,

ISO 9074 Pascal data types. Pascal-based

Interaction

correspond to the

inputs and outputs of

modules.
LOTOS Processes. Abstract Process algebra (CCS | Lexical
data types. ~calculus of )
a0 Interaction is built communicating Graphic

into synchronisation | systems, CSP -
mechanism: two or Communicating
more behaviour Sequential Processes)
expressions may and abstract data
synchronise an event. | types

SDL is an extended finite state machine based notation. It provides constructs
for representing structures, behaviours and communication. SDL was
developed by CCITT (CCITT Standard Z.100) and it is widely used in
telecommunications design. SDL is not an ISO standard. There are several tools
based on SDL, as well as extensions, e.g. an object-oriented extension as
mentioned above. SDL offers a relatively easy starting point for implementa-
tion. Maybe the weakest point of SDL seen from the Open-edi point of view is,
that the contents of the messages between different processes can not be
described. SDL is exemplified in the scenario description in section 4.

Effektiv IT — Affdrskommunikation
16 Svenska Institutet for Systemutveckling



Estelle is a formally-defined specification language. It was designed to describe
distributed or concurrent processing systems especially within the context of
OSI services and protocols. An Estelle specification is a definition of a system of
a hierarchically structured state machine. Communication between the
modules (= state machines) defined is either asynchronous or synchronous.
Estelle specifications can be prepared at different levels of abstraction. A
specification can be very abstract or implementation-oriented. Implementation-
oriented specifications can be derived from abstract specifications. There are
several design tools based on Estelle, and compilers have been developed.
Estelle has been standardised by ISO (ISO IS 9074). Because of its suitability to
abstract and implementation-oriented specifications it can be used by IT
designers as well as implementers.

LOTOS is a mathematically defined Formal Description Technique. Its basis is
in theory based on CCS, CSP and abstract data types. Due to its mathematical
basis LOTOS can be used for analysis and development of tools including
simulation, compilation and testing. LOTOS permits modelling for both
synchronous and asynchronous communication, and the basis of descriptions is
the time sequence of processes. LOTOS can be used for producing specifications
of the allowed behaviours of the system. Compared to Estelle and SDL, LOTOS
is more abstract and gives more freedom for implementors. LOTOS is a design-
oriented tool primarily for the use of IT designers. It is a well-established ISO
Standard (ISO IS 8807).

There are obviously a number of other notations that can be used for process
and state modelling. We limit ourselves to these three notations since they are
well-known and standardised, and, should therefore be relevant to consider of
EDI applications.

3.2.2 Notations for Information Structuring

The notations in this section are primarily used in information modelling and
conceptual schema design. Most notations date back to the work of Bachman
on database schema diagrams. Since then an increased understanding and
consensus have been reached of the basic abstraction mechanisms for informa-
tion modelling including classification, generalisation, grouping and
aggregation. The common modelling constructs in most of these notations are
based on entities and attributes, and relations between these. The notations can
be intended for analysis or (database) design or both, where design implies the
inclusion of data structuring constructs in the notation.

It is common to make a distinction between binary and n-ary notations with
respect to the treatment of relations, where the latter are referred to as entity-
attribute-relation (ER) notations. Chen's notation [Chen 1976] is often
considered the prototype for ER-notations. Most notations are in fact binary,
even some claiming kin with Chen's notation. Regardless of this, n-ary relations
can be represented by entities in any of these notations. Another distinction is
how strict the notations separate attributes from entities. Conceptually (e.g. in

Effektiv IT — Affdrskommunikation
Svenska Institutet for Systemutveckling 17



an analysis situation) that distinction may not be necessary, but for design it
may be practical. The distinction can be based on the assumption that entities
have an identity (and hence an independent existence) whereas attributes have
not. Or, if attributes can be considered as "values” (singles) or lexical objects,
whereas entities are viewed as composite (or non-lexical) objects.

Most of the notations show small differences in graphical syntax, but they vary
in their focus on analysis or design.

Notation Constructs Basis Language
ER (Chen) Entities, attributes Relational , semantic | Graphic
and relations. nets
Cardinality
NIAM (RIDL) Entities and relations, | Binary relations. Graphic
cf ISO TR9007 Eeniplstion Lexical (RIDL)
Distinguishes lexical
from non-lexical
entities.
STEP: EXPRESS Schema, entity, “Binary relations. _ Lexical
ISO 10303 part 11 relations (attributes), | paty structuring from | Graphic subset
rules. various programming
Generalisation, languages.
Cardinality , Based on Conceptual
fl.]nf:thI.‘IS, Schema languages
derivation rules. (ISO TR9007)
IDEF-1X Entities and relations | Binary relations. Graphic
Cardinality
Subtypes
Information
Engineering: IE
OMT: Object Model | Classes (entities), ER. Adapted with
relations, instances, object-oriented
attributes, concepts
operations/methods
Generalisation,
Cardinality
TEMPORA: ERT Entities and relations, | Binary relations,
attributes. augmented with time
Derived objects. properties.
Generalisation.
Time stamps

The ER-notation was originally proposed as an aid in database schema design,
and has been extended in various directions since its introduction. The basic

Effekziv IT — Affdrskommunikation
18 Svenska Institutet for Systemutveckling



ER notation support of n-ary relations and relationships may have attributes.
Generalisation is supported by ISA relationships. Although well-known and
widely used, the semantics of ISA relationships are still a source of confusion in
many notations. There is extensive support for automation for ER notations.

NIAM [Nijssen and Halpin 1989] is a well-known representative of the binary
approach to information modelling. This notation makes a distinction between
lexical and non-lexical entities, informally corresponding to values and
composite objects. RIDL is a lexical notation for NIAM in which additional
rules and functions can be specified. Note that binary notations may have
attributes, associated to entities as well as relationships.

EXPRESS [ISO 1992] is the information modelling notation in the STEP
standard for product data representation and exchange. It is intended as a
schema modelling and design language, and can in that sense be considered a
semantic data modelling notation. EXPRESS is primarily defined as a lexical
language, the graphic language is a subset of the full notation but includes the
basic modelling constructs (entities, relations, attributes and cardinality). In
addition, EXPRESS also defines a schema concept which can be used to relate a
set of models as a number of independent schemata. Tool support exists, both
products and research prototypes, for the design and interpretation of
EXPRESS models. Figure 3.2 depicts a subset of the EXPRESS-G notation for a
model in the context of our Organ-Request example.

spouse
—T T
| o
| == STRING ||
Person No )
l of INTEGER ||
1™ " gate admission ) staysin )
| L TP I SR S S Patient (INV)patients S[U:?] o Hosp1tal
1 clinics S[1:7]
Recipient Donor Clinic

Figure 3.2: Express-G

Effektiv IT — Affdrskommunikation
Svenska Institutet for Systemutveckiing 19



The model examplifies generalisation in terms of subtype relations: Recipient
and Donor are non-overlapping subtypes of Patient, i.e., a Patient is either
Donor or Recipient of an organ. A given patient staysIn exactly one hospital,
whereas a hospital may have zero or more patients (the staysIn inverse
relationship). A hospital has one or many clinics. Person is a generalisation of
Patient, persons have an optional spouse relationship. Both person and patient
have some additional attributes of which name and ssNo are based on
EXPRESS data types, and admission  is based on a user defined type date. The
graphical notation includes several other constructs, e.g. pertaining to the
representation of data types. Some additional examples are given in section 4.

Information Engineering (IE) [Rock-Evans and Engelien 1989] represents a class
of methods with a similar focus on information analysis in systems develop-
ment. The information modelling notations use similar graphical language
conventions, and currently they are possibly the most well-known. Originating
in the CACI method, further developed and promoted by Martin & Finkelstein
[Avison and Fitzgerald 1988][Connor 1985], IE as a method framework has
been adapted and supported by several methods and case tools.

IDEF-1X [Rock-Evans and Engelien 1989] is the information modelling notation
in the IDEF* suite of methods and techniques developed by the Integrated
Computer-Aided Manufacturing (ICAM) program of the US Air force. IDEF-1X
(a refinement of IDEF-1) has its origins in entity-relationship models and data
models in general. IDEF-1 is supported by design tools, often in combination
with the process modelling notation IDEF-0 (see next section).

We include the Object Modelling Technique (OMT) [Rumbaugh, Blaha et al.
1991] here as a representative of a recent object-oriented design method. OMT
includes an ER-notation extended with some object-oriented concepts. This
object model provides a rich set of modelling constructs, supporting most
essential abstraction mechanisms.

ERT (Entity-Relationship-Time) is a product of research into requirements
specification [Theodoulidis, Wangler et al. 1992] in which time has been
included in an extended ER notation. The notation allows the association of
temporal properties to entities and relations. A tool environment exists for
analysis and database design.

3.2.3 Notations for Activity and Data Flow Composition

These notations focus activity precedence and dependence, and the functional
decomposition of activities.

The primary use of basic dataflow notions is the structuring of proces-
ses/activities, or functional decomposition of systems. Generic constructs of
dataflow notations include processes/activities , data stores ("sinks & sources")
and precedence (or flow) relations. A dataflow model is (despite the term
"flow") in most cases a static view of the system being modelled. It shows the

Effektiv IT — Affdrskommunikation
20 Svenska Institutet for Systemutveckling



relationship between activities and data stores, in terms of directed arcs
indicating a "flow" from one activity to another. Basic dataflow notations do not
express sequencing or synchronisation of activities. Rather, they show the
activity precedence structure in terms of what "flows" are required for a certain
activity. The set of activities/processes are partially ordered. However, some
notations do distinguish the flow of control from the flow of data or other
physical flows. Other extensions include synchronisation operators, and
explicit information flows between activities, by associating object types ( or
similar) with each flow relation.

The formal basis of dataflow notations depends on their extension; whereas
basic dataflow notations cannot be said to have a formal basis, extensions using
various synchronisation primitives can be related to state machines or Petri
Nets.

Notation Constructs Basis Language
SA/SD: Dataflow Activities , data stores | Precedence relations | Graphic
("sinks & sources"),
flow relations.
Activity precedence
and functional
decomposition.
STRADIS: Dataflow
SSADM: Dataflow
SADT: Actigrams Activities, three types | Data & control flow
IDEFO of flow relations. -
Activity
decomposition.
Message Sequence Activities, messages, | (State Machines)
time.
Action Diagrams Activities, explicit Precedence relations
information & control
flow
Design/CPN States, transitions, Coloured Petri Nets
typed flows (tokens)
Activity
decomposition

SA /SD [DeMarco 1978], STRADIS [Avison and Fitzgerald 1988] and SSADM
[Downs, Clare et al. 1988] are representatives of traditional functional methods
including the basic dataflow diagrams. They all share the same basic set of
constructs with minor differences in graphic syntax. They do not provide a
separation of data and control flow, or synchronisation primitives. Variations of

Effektiv IT — Affdrskommunikation
Svenska Institutet for Systemutveckling 21



these DFDs are used in numerous CASE tools as well as in some recent object-
oriented methods.

SADT was originally developed in the late 1960s as a general method for
modelling complex systems. Since then, it has been widely used in information
systems design for functional modelling[Floyd 1986], and lately also in more
general applications of (business/production) process design[Azari 1993]. The
SADT flow notation separates different types of control flows from the flow of
artefacts.

Controls

Inputs——>| Activity [—# Outputs

1

Mechanisms

Figure 3.3: SADT activity

Inputs (e.g. information or other artefacts) are transformed into outputs in the
activity, by some mechanism (e.g., a method or a human) under some form of
control possibly including the outputs of other activities or any other form of
control (e.g., regulations).

IDEF-0 is an adaptation of SADT included in the IDEF suite (mentioned
above). Several tools exist that support SADT/IDEF [MetaSoftware 1993].
Figure 3.4 is a simple IDEF0 model of some activities of the Organ-request
scenario, where the roles are depicted as mechanisms.

Organ Required
Request Organ
Patient File —p Organ Request
N
&
Process Enquiry
Request ‘1 Accept g
\
a Offer
Organ
Announcgment
Acgept
Qrgan DB Receive
Organ | _J
OrganCenter Organ Donor ’
OrganRequester

Figure 3.4: IDEFO model

Effektiv IT — Affdrskommunikation
22 Svenska Institutet for Systemutveckling



We include message sequence [Vanslembrouck and Verdonk 1991] charts here
simply because they are a very simple and commonly used form to describe
how messages (data, signals, etc) are sequenced between a set of activities
(processes, agents, etc) over time.

Organ

Organ Organ
Requester ot DaaoE
Organ Request
g eq >
Organ Enquiry >
Organ Offer
Accept
Announcement g
v Accept >
)

Figure 3.5: Message sequence chart

Design/CPN [MetaSoftware 1992]is a tool that provides a process design and
simulation environment based on Coloured Petri Nets (see next section). The
notation provides decomposition of activities and the modelling of states in
terms of a flow of artefacts.

Action Diagrams [Goldkuhl 1993] are a further development of the ISAC
method. It is basically a combined data and control flow notation, but it also
introduces the concept of organisational context for processes and flows.

Most object-oriented methods include variations of dataflow notations, e.g. the
OMT functional model. They typically relate a set of activities to an object type
(entity). Message sequence charts are also used in some object-oriented
methods showing message interactions between objects.

3.2.4 Notations for Activity Co-ordination

Activity co-ordination models should ideally integrate modelling constructs for
role description, process synchronisation and interaction, as well as a
representation of the commitments and obligations attributable to users.

We exemplify with some notations that tries to integrate some of these aspects.
The difference between notations for activity co-ordination and those for
activity and dataflow composition lies in their origin and intended use.

Effektiv IT — Affdrskommunikation
Svenska Institutet for Systemutveckling 23



Notation Constructs Basis Language
Coloured Petri Nets | States, transitions, Petri Nets Graphic
tokens and typing Lasdoal
(colouring)
Role Interaction Nets | Roles, dependencies | (related) Graphic
(RINs) and process elements.
Role Activity Roles, dependencies, | (related)
Diagrams (RADs) processes, process
synchronisation
Deontic Rule Deontic operators Petri Nets Graphic
Language Deontic Logic Lexical
ActionWorkflow: Workflow, roles and | Speech Acts Graphic
Business Design acts. Customer-
Language performer relations
ORDIT : Enterprise & | Organisational ER-like
Interaction Diagrams | structures, role Data/control flow
relationships
. . . Speech acts
Role interactions in
terms of functions
and commitments.

The Petri Net formalism [Jensen 1988] can be considered the formal basis for
several notations where co-ordination is important. The basic Petri Net
notation is very simple and powerful, for most practical applications it has been
extended and complemented in various directions. We include Coloured Petri
Nets (CPNs) here as it is a commonly used extension to Petri Nets. CPNs could
very well be considered as a data and control flow formalism with high
expressive power. These formalisms are well suited to model concurrency and
to detect conflicts in systems that include interacting processes. CPNs (and
Petri Nets in general) are therefore often used in simulation tools.

Role Interaction Nets (RINs) [Curtis, Kellner et al. 1992][Singh and Rein 1992]1
is a notation originally developed for software process co-ordination. It is
similar to basic dataflow notations and message sequence charts and can be
related to Petri Nets.

1 Reference not available at time of writing

Effektiv IT — Afféirskommunikation
24 Svenska Institutet for Systemutveckling



Organ Organ Organ
Requester Centre Donor

Offer
Accept

Figure 3.6: RINs

There are other graphical notations for role interaction based on RINSs, such as
Role Activity Diagrams (RADs) [Kontio 1994]. This notation adds process logic

to role descriptions, providing synchronisation of activities within and in
between roles.

Organ Requester Organ Centre Organ Donor

Request Orghn

Ehquire

C 1]

Offer
§—>  ExternalEven
D Interaction
gnoounge Accepf | | Activity
Accept ? = con ¥
? L EndProcess

Figure 3.7: RADs

Deontic logic has been applied to information systems to model such aspects as
contracting and authorisation. As such, it is not a co-ordination notation in the
sense of, e.g. Petri Nets or similar. The reason for introducing this formalism in
the Open-edi context is its potential use in specifying commitment and
obligations, etc., on the basis of formal logic. This is an essential aspect of

Effektiv IT — Affédrskommunikation
Svenska Institutet for Systemutveckling 25



scenarios, not covered by conventional notations. The notation referred to here
[Lee 1988] combines deontic logic operators with Petri Nets.

Action Workflow [Medina-Mora, Winograd et al. 1992] is an example of a
workflow product that is partly based on speech-act theory. It stems from
previous work on the language/action approach to information systems design
[Flores, Graves et al. 1988]. A simple graphical notation is here used to model
business processes as a set of interrelated workflow loops. For each such
workflow loop, the roles and expected behaviour is described by a client-
performer relationship. The product provides support for creating client-server
based applications from the models. Other approaches to information systems
modelling based on speech-acts include SAMPO [Auraméki, Lehtinen et al.
1988].

ORDIT [Blyth, Chudge et al. 1993] is a method representing research in the area
of enterprise modelling , intended for analysis of the goals, structures and roles
in an organisation. Its graphical notation is intended to give a unified
representation of control flow, information and of the obligations and
commitments between roles. The method includes an enterprise modelling
language and a role reference model. The Enterprise Diagrams (Figure 3.8) are
notations in ORDIT which are intended to provide a clear separation of
behavioural and structural properties of an organisational system in terms of
roles. This represents another facet of role modelling compared to notations like
RINs and RADs, focusing on obligations and expected behaviour of roles, and
not primarily on process logic or interaction sequences.

Organ Requester Organ Centre
Request Organ Process Request
Accept Organ Announce Organ
R -
( Requester ) { Provider ) Organ Donot
Organ Enquiry Process Request
Evaluate Offer Offer Organ

( Requester )} < Provider )

Figure 3.8: Ordit Enterprise Diagram

For role dependencies this notation distinguishes between structural
relationships (Requester-provider), representing obligations, and functional
relationships (Request Organ - Process Request), representing behaviour.

Effektiv IT — Affdrskommunikation
26 Svenska Institutet for Systemutveckling



3.2.5 Notations for Interchange Formats

There is a wide range of notations intended for interchange formats. These
should not primarily be regarded as modelling formalisms as discussed
above, and they are not intended as such. We include a brief discussion on
some interchange formats in order to relate them to the Open-edi reference
model. Most of these notations also contain abstraction mechanisms similar to
other notations, and could in principle be used for (limited) information
analysis and modelling. However, the primary objectives are to define the
structure and format of data to be exchanged between applications. This often
implies inclusion of syntax elements or structures with a specific meaning to
the transmission process (such as message sequencing, coding and addressing).
We give example of three classes of inter-change formats which represent
notations quite different in aims and scope.

Message structure and format:

ASN.1 is a language syntax suitable for defining message structures. It is
primarily a data structuring language with an emphasis on data type definition.
In addition to the syntax, ASN.1 also includes basic encoding rules (BER) for
generating a transmission format, although other transmission formats are
possible to use with ASN.1.

Document interchange:

SGML (ISO 8879) is used to define document mark-up languages. There are in
principle two approaches to document coding; procedural coding focusing the
layout and descriptive coding focusing the structural contents. Mark-up
languages are based on the latter approach. Such a language structures
documents into different elements (title, authors, section, paragraph, etc) using
pre-defined mark-up identifiers, irrespective of document contents. SGML is
used to define the grammar of languages to describe classes of documents (or
types), in this sense it is a grammar representation standard. A mark-up
language like SGML is of general applicability, and is also a tool for structuring
document data in archiving applications. Various tools and products include
SGML as a component, e.g. the hyper media standard HyTime (ISO 10744),
based on SGML, and also a component in frameworks like CALS.

Another example in this class is the ODA (Open Document Architecture) (ISO
8613) for document structuring and interchange. The objective is to support
the interchange of documents including logical structure, the layout and
presentation as well as contents. ODA specifies an interchange format called
ODIF (Open Document Interchange Format), which is an ASN.1 encoding for
the transfer of documents between applications. ODA also includes the ODL
(Open Document Language) which is an application of SGML defining a mark
up language for ODA.

Effektiv IT — Affdrskommunikation
Svenska Institutet for Systemutveckling 27



Structured data interchange:

Another class of interchange formats can be referred to as structured data
interchange!, which emphasises the grouping and sequencing of pre-defined
(or standardised) data elements. An example here is the EDIFACT standard
and its continuously increasing number of generic message types (UNSM - UN
Standard Messages). Subsets of these general and complex types are formed for
use by specific business sectors. The syntax of EDIFACT in combination with
these principles for message design, makes it unsuitable for modelling and
representation in general, and in particular for information parcels in scenarios.
Efforts are, however, being made to promote the use of conceptual (informa-
tion) modelling techniques to design EDI message types. The EDIFACT
Business and Information Modelling approach (BIM) advocates the use of a
shared message repository accessible by different design tools but independent
from specific methods and models. A meta model for such a repository has
been proposed [Johansen 1993] using an IE based entity-relation notation.

Numerous other notations and syntaxes exist that can qualify as interchange
formats. A comprehensive evaluation of interchange formats for health-care
applications has been carried out by CEN [CEN/TC251 1992]. Interchange
formats are needed in Open-edi standards but should be considered part of the
support services. In this sense they belong to the Functional Service View of the
Open-edi reference model and are not part of scenario descriptions in the
Business Operational View. Information parcels should be mapped to the
appropriate interchange formats, and it is conceivable that alternative inter-
change formats can be used in the same scenario description.

1 Intuitively "EDI" would be a more appropriate label. However, EDI should be considered as
an application domain including both Open EDI and interchange formats such as the
EDIFACT standard and its subsets.

Effektiv IT — Affdrskommunikation
28 Svenska Institutet for Systemutveckling



4. A Scenario Description

In this section we give an example of an Open-edi scenario description. The
Organ-Request example was briefly introduced in chapter 2.5, and is further
elaborated here. The proposed structure of a scenario description is the
following:

1. Scenario objectives

2. Scenario attributes

2.1. Rules and Regulations

2.2. Role Relationship Model
2.2. Scenario Information Model
3. Information Parcel Model

4. Role Model

5. Usage Case

We provide descriptions of different aspects of the scenario using some of the
previously mentioned notations, such as SDL, EXPRESS and message sequence
charts, in combination with natural language explanations. The choice of these
notations is quite arbitrary, other notations may provide a higher expressive
power. We do not consider the description to be complete, nor do we explain
all details. The scenario description defines certain relationships between the
various models in the different sections. However, it should not be seen as a
method for scenario definition, merely as a way of structuring the models. The
description includes both the models of the actual scenario example as well as
general comments on suggested contents of each section.

4.1 Scenario Objectives

The application domain of this scenario is the health-care sector. It is intended
to support the management of information related to organ request and supply.
See section 2.5 for the introductory description.

Candidate notations: Depending on the importance of the objectives, e.g. their
explanatory value, a more formal description could be used, e.g. an information
modelling notation where entities represent objectives or goals.

Effektiv IT — Afférskommunikation
Svenska Institutet for Systemutveckling 29



4.2 Scenario Attributes

4.2.1 Rules and Regulations

This section should include references to any national/international laws or
regulations pertaining to the scenario. Any commitments or obligations
attributable to the participants of the scenario could also be specified here.

Candidate notations: Co-ordination notations ,e.g. based on speech acts or
deontic logic, could be interesting to investigate for this aspect asa scenario.

4.2.2 Role Relationship Model

The Role Relationship Model provides an overview of role relationships,
without considering internal behaviour of individual roles. It should also
define any restrictions or constraints imposed on the roles. When defining a
scenario, we provide a description, i.e. a generic and reusable definition that
can be instantiated by business participants assuming the roles of the scenario.
Thus, at any one time a number of scenario instances may be active or
executing, with each role bound to some business participant. The participants
of this scenario could be different hospitals. Three roles have been identified.

REQUESTRR
PN
\
C3
ORGAN L4 ORGAN
CENTRE e DONOR
c4

Figure 4.1: Role Relationships

The description in Fig. 4.1 is based on the block diagram of SDL. Each such
block will subsequently be detailed in the Role Model (sec. 4.4). Based on the
role relationships, a first set of information requirements can be identified:

Cl= | Organ Request: a request for an organ

C2= | Organ Availability Announcement: information on the availability of
an organ

C3= | Organ Enquiry: an enquiry for an organ from a donor
C4= | Offer: information on organs that can be offered

These information requirements will be candidate information parcels.

Effektiv IT — Affiirskommunikation
30 Svenska Instituter for Systemutveckling



Constraints and restrictions include the binding of participants to the roles, and
the instantiation of roles. For an instance of this scenario only one participant
is allowed for each role. We express this in a simple information model (Fig.

42).

Organ Request
Scenario

lhaslnstance [0.21

Organ Request
Scenario Instance

[11] [11] [11]
o

Organ Organ Organ
Requester Centre Donor

Figure 4.2: Role instantiation constraints

A further constraint we may want to impose on this scenario is that the same
hospital (i.e. participant) should not be able to act in multiple roles in one
instance of the scenario. For example, a hospital should not be able to act as an
organ requester and organ centre simultaneously. We call this a role binding
constraint, represented in Fig.4.3.

Organ Request| _ assumedBy

_ 3} Participant
Role (INV)assumes [1:1]

e

Organ Organ Organ
Requester Centre Donor

Figure 4.3: Role binding constraints

The three roles are specialisations of a general Organ Request Role entity. The
relationship from the Organ Request Role entity to the Participant entity
implies that a single role may be assumed by ("played”) exactly one Participant,
which also applies to the inverse relationship (INV).

Note, however, that a hospital may assume different roles in different instances
of the scenario, i.e. being a requester in one instance of the scenario, and

Effektiv IT — Affdrskommunikation
Svenska Institutet for Systemutveckling 31



possibly act as a donor in another. Several instances of the scenario may of
course be active simultaneously.

Other candidate notations: Various process modelling notations that elaborate
the role concept such as RINs, requirements modelling notations similar to the
Enterprise diagrams in ORDIT.

423, Scenario Information Model

The Scenario Information Model represents a common (or global) information
model for the roles in the scenario. It describes any information entity relevant
to the application domain of the scenario. Its purpose is to provide a model
from which information parcels can be derived. All roles in the Role
Relationship Model are required to be represented as entities in the Scenario
Information Model, thereby relating these two models.

I Participant
CL assumes
Role (l
Hospital
1
é O i Patient i
Organ Organ Organ R
Donor Centre Requester
(&)
subj 1
submitfedTo i) é
o 2%
Organ Recipient
Availability
IAnnouncement
Donor
supports
O | | refersTo
liesT }
Organ e Request
Enquiry .
o) incfu des Tequires
respopdsTo QO
donatedBy
‘ Organ
offers
maKes
O Offer

Figure 4.4: Scenario Information Model

Effektiv IT — Afféirskommunikation
32 Svenska Instituter for Systemutveckling



The roles of the scenario are represented as specialisations of the general Role
entity. The specialisation of the Participant entity implies that the users of this
scenario are hospitals. Patients are included in the model, in terms of two non-
overlapping subtypes (Recipient and Donor). A Patient cannot donate organs to
himself. The Organ Requester entity issues an Organ Request, which is
submitted to the Organ Centre. The Organ Centre provides an Organ
Availability Announcement,. This may be dependent on an Organ Enquiry
made to an Organ Donor. This dynamic aspect is not expressed in this model, it
has to be modelled in terms of role behaviour.

This model only includes the most significant relationships between entities.
The model should be seen as a conceptual model defining the context of the
scenario, it does not prescribe a specific design.

Other candidate notations: Any information modelling notations focused on
analysis.

4.3 Information Parcel Model

This section of the scenario description defines the set of information parcels
used by all roles. These are described by an Information Parcel Model based on
the Scenario Information Model previously defined.

Based on the relationships in the Role Relationship Model and the
corresponding entity definitions in the Scenario Information Model, we select a
number of views of the latter. These views include the central entities that are
candidates for information parcel definitions. Each view should include at least
two role entities corresponding to the role relationship in the Role Relationship
Model, in this sense information parcels are always defined as relationships
among roles.

Several views may thus be defined on the basis of role relationships, each one
may result in one or more information parcel definitions. However, all
information parcels will not have direct correspondence to entities in these
views. We give an example of one such view with the Organ Request as the
central entity and suggested information parcel (Figure 4.5).

Effektiv IT — Affirskommunikation
Svenska Institutet for Systemutveckling 33



Hospital {3

Patient

managedBy
Organ Organ
Centre Requester

requires

Figure 4.5: Information Parcel View of the Scenario Information Model
for Organ Request.

Each view of the entities in the Scenario Information Model is now used as a
basis for defining the information parcels. The total set of information parcel
descriptions make up the Information Parcel Model, in which each information
parcel should be directly or indirectly related. This model is clearly more
focused on design than the previous one. Although it is not to be seen as a
"message design”, we are still dealing with specification information for the
scenario, albeit on a more specific level.

Additional attributes may now be defined for the entities. In Figure 4.6 only the
Organ Request entity is detailed in this way, although in general all entities in
a view should be specified to a sufficient level of detail. Any inverse
relationships to other entities should be made explicit, e.g. the issues relation-
ship from Organ Requester to Organ Request is represented by its inverse
issuedBy. The reason for this is to preserve the Organ Request entity as the
defining (or central) entity for the information parcel. Some relationships in
the information parcel view may have their identifiers changed in order to
better correspond to attribute names. No additional entity relationships should
however be introduced, so as to preserve the structural correspondence with
the Scenario Information Model.

Effektiv IT — Afférskommunikation
34 Svenska Institutet for Systemutveckling



Organ Organ
Centre Requester

submittedTo 1ssuedBy

| Recipient

o Tl _prority
lI'Zl'lv.urneratlon e e e

signature

Organ

Figure 4.6: The Information Parcel Model including the single information
parcel Organ Request.

The additional attributes for Organ Request are based on standard data types
of this particular notation. An optional attribute (priority) has been added to
represent possible priority classes for a request, a user defined enumeration
data type is used to represent this attribute. The signature attribute could be
intended for digital signatures in a request.

Although the Information Parcel Model is a description of a static aspect of the
scenario, i.e. the structure of information exchanged, its definition requires an
analysis of the dynamic aspect of the scenario. Thus, descriptions of the
external role behaviour may supplement the modelling of information parcels
(the internal behaviour is, however, left for the Role Model). We exemplify with
a message sequence chart showing one part of the role interaction. Such
descriptions will be the starting point for definition of the Role Model.

Organ

Requester Ele Crsgein

Centre Donor
ORG_REQUEST

NO_ORG_AV_REQ_LIST

ORG_REQ _TO_SUPP >
ORG_OFFERED

ORG_ACK
ORG_AVAIL -

v ORG_ACCEPTED
t ’ )

Figure 4.7: Information Parcel sequence chart

Effektiv IT — Affdrskommunikation
Svenska Institutet for Systemutveckling 35



This simple chart does not show the complete role behaviour, just a specific
sequence of information parcel exchanges. Thus several such descriptions may
need to be provided. The Organ Requester submits an organ request. There are
no locally available organs at the Organ Centre, hence the requester must be
informed about this and possibly assigned to the waiting list, with the request
pending (while the Organ Centre makes an enquiry at an Organ Donor). This
introduces a new information requirement not present in the Scenario Informa-
tion Model, although it can be related to the entities representing the request
and the organ centre. A new information parcel is introduced in the
Information Parcel Model (Fig. 4.8). It is used to inform the requester that the
organ was not available and that the requester is assigned to a waiting list.

Organ Organ
. Centre Requester
issuedTo (K

Recipient
submittedTo

NO_ORG_AV I request Or gan
REQ LIST I Request
date organ
@

Organ

Figure 4.8: Information parcel for waiting list assignment added

Some of the attributes of the Organ Request information parcel have been
suppressed for clarity. The waiting list information parcel simply refers to the
request, and indirectly to the requester, as well as to the organ centre.

The additional information parcels for this example are defined in the same
way, some as result of detailing the views, others a result of analysing the
external role behaviour. We now list a complete set of information parcels for
this example, grouped according to the role relationships. Four of these (*) have
a direct correspondence to entities in the Scenario Information Model.

Cl= ORG_REQUEST  (Organ Request) *
ORG_REQ REM (Organ Request Reminder)

Effektiv IT — Afféirskommunikation
36 Svenska Institutet for Systemutveckling



ORG_ACCEPTED (Organ Accepted)
STOP_REQ (Cancel a pending organ request)

= ORG_AVAIL (Organ Availability Announcement) *
NO_ORG_AV_REQ LIST (Waiting list assignment)
RE_REQ_ACK (Acknowledgement of a request reminder)

C3= ORG_REQ _TO_SUPP (Organ Enquiry) *
ORG_ACK (Acknowledgement of offered organ)
STOP_REQ

C4= ORG_OFFERED  (Offer) *

Following the EXPRESS notation, the Information Parcel Model could
correspond to a Schema.

Other candidate notations: In principle any information modelling notation,
combined with data flow and activity composition notations with explicit
separation of control flow.

44 Role Model

The Role Model provides a detailed description of each role. It should clearly
identify the information parcels that are the interaction points between each
pair of roles. The Role model is developed based on the Information Parcels
Model.

SDL graphs are used in our example to describe each role. SDL is well-suited to
all systems whose behaviour can be effectively modelled by extended finite-
state machines and where the focus is placed on interaction aspects. The
correspondence between scenario concepts and SDL modelling constructs is
given below:

Scenario SDL

Role Process
Information Parcel Signal
Request Information Parcel Receive Signal
Submit Information Parcel Send Signal
Internal Functions Task

State State

Effektiv IT — Affdrskommunikation
Svenska Institutet for Systemutveckling 37



In addition we will in our example model an Internal Event as an Internal
Signal, i.e. a Signal received not from the external world to the role, but within
the role itself. Note the importance of separating internal behaviour of the role
from its external behaviour.

Each role from the Role Relationship Model will be described in a separate
Role Model using SDL graphs (Figure 4.9).

Reeive internal
signal

Send External
Signal

Return to state x

State x

Initial state x

selection

Receive external

—

£ signal

|

|
Z
>

Perform internal
function

State x

State y

Enter state y

Figure 4.9: SDL graph legend

The Organ Requester role (Figure 4.10) will typically be played by a hospital
within an instance of this scenario. The Organ Requester is the initiator of the
Organ-Request Scenario. The need for an organ for some patient drives the
Organ Requester to request an organ from the Organ Centre.

38

Effektiv IT — Afféirskommunikation
Svenska Institutet for Systemutveckling



ORGAN REQUESTER

IDLE
STATE O

| ORGREQ

<

START TIMER T1

ORGAN REQUEST
PENDING

STATE 1

I

ORG_AVAIL

<

NO_ORG_AV_
REQ_UST

FNIMEOUT T1 <

STOP-REQ

STOP T1
START TIMER T2

|
S D

ORG_ACCEFPTED > REQUEST ACCEPTED

WAITING J
TIMEOUT T2 ORG_AVAIL < STOP_REQ <
L , .
roneﬁs_gREM ) |_sToP_REQ
ORG_ACCEPTED >

— :

E_REQUEST ISTATE 0

PENDING
\__STATE |3

1 1

RE_REQ_ACK

< STOP-REQ

STOP T2
START TIMER T1

Figure 4.10: The Organ Requester Role

Effektiv IT — Afférskommunikation
Svenska Institutet for Systemutveckling

STATEO

STOP_RECQ >
|

39



The Organ Centre Role (Figure 4.11) receives requests for Organs, and tries to
fulfil these requests. Either by local supply, or by supply from an organ Donor.

ORGAN CENTRE

IDLE

STATEO

-

oG YES
AVAIL J

ORGAN_AVAIL
NO

NO_ORG_AV_ > I

REQLIST ORGAN OFFERED
ORG_REQ_TO_SUPP > STATE 1
AWAIT DONOR ORG_ACCEPTED <
RESPONSE

STATE 2 |

STATEO
STOP_REQ z ORG_REQ_REM < ORG_OFFERED <

STOP REQ > RE_REQ_ACK > ORG ACK >

STATEO STATE 2 ORGAN_AVAIL
STATE 1

Figure 4.11: The Organ Centre Role

The Organ Donor Role (Figure 4.12) receives requests for Organs and supplies
the requester (Organ Centre) with organs if available.

Effektiv IT — Afféirskommunikation
40 Svenska Institutet fér Systemutveckling



ORGAN DONOR

IDGA

STATE O

]

ORG_REQ_TO_
SUPP

oG YES
AVAIL |
ORG_OFFERED
ND
WAIT ON ORGAN
AWAIT ACK
STATE 1
T STATE 2
, | 7 |
ORG_AVAIL <
5TOP_REQUEST
' | ORG_ACK )

_ ORG_OFFERED >
STATEO
STATEO
| STATEOQ

Figure 4.12: Organ Donor Role

Other candidate notations: Other notations based on Petri Nets such as Coloured
Petri Nets, or other state based notations.

45 Usage Case

The aim of this final section of the scenario description is to provide an
instantiated description of the scenario defined. The objective is to provide
walk-throughs of the different models. Ideally, this could be supported by
simulations depending on the notations used and the tool support available.
We do not elaborate this further in this report.

This concludes the Organ-Request Scenario description.

Effektiv IT — Afférskommunikation
Svenska Institutet for Systemutveckling 41



5. Considering Methods for Open-edi

We have previously not discussed methodology in relation to notations,
although most notations mentioned above are part of some method or at least
have guidelines for their application. It is important to consider whether Open-
edi requires additional or different methodological issues to be focused, than
those covered by existing methods for information systems design. It should
be stressed that Open-edi is concerned with inter-organisational applications. It
focuses the co-operation model, and not the internal organisation of participant
information systems or how "business should be performed". In view of this,
designers of such systems may be required to consider aspects like autonomy,
responsibilities, contracting, legal procedures and security. We have mentioned
some formalisms based on deontic logics or linguistics that could be a basis for
modelling some such aspects. However, the practical application of this needs
to be investigated further.

Method frameworks have been proposed for EDI [Peric and Simon 1991] that
prescribe an information systems specification and design process for message
based applications. The significant aspect covered is that message structure and
design is put in its proper context, by relating it to conventional modelling and
design techniques for information systems. The interplay between different
models (e.g., processes and information) and different abstraction levels as well
as development stages (e.g. specification and design) is one important aspect
here, which, however, is not peculiar to EDL This is a weak point in most
methods using multiple notations.

With respect to modelling, the emerging object-oriented methods may improve
the interplay between different notations and the use of uniform modelling
constructs. Object-oriented analysis and design methods do in general include
notations for both static, dynamic and functional aspects of an information
system. There is currently no unified object-oriented notation for analysis and
design, although the object-oriented concepts are fairly uniform and most
methods employ a similar set of notations based on a combination of the
notations described above. Existing methods are also similar in their focus on
design. They do, however, introduce new modelling concepts like the object
life cycle, and the principle of locality and modularity (c.f. encapsulation). Both
these aspects are used to model object behaviour, different from other forms of
conceptual modelling of behaviour. The dynamics in terms of individual object
state changes, are typically based on state transition diagrams and state charts.
As a complement, message sequence charts are used to model interactions
between a set of objects. Functional and computational aspects are modelled
separately, including the use of dataflow diagrams or flow charts. Another
aspect is the support for object layering and clustering, as a way of reducing the
complexity of models.

Not surprisingly, the most well developed modelling perspective in object-
oriented methods is the information (or object) structuring, describing the

Effektiv IT — Affidrskommunikation
42 Svenska Institutet for Systemutveckling



static aspects of a system. Typically, conventional ER notations are enhanced
with object-oriented concepts. There is an evident shift of emphasis in object-
oriented methods compared to traditional methods (e.g. SA /SD). Although
they generally support the separate views of an information system in terms of
information, dynamics and function; object-oriented methods focus the analysis
(and design) around the object (information) model, whereas many traditional
methods focus functional decomposition. This is obviously reflected in the
notations.

The choice of object-oriented modelling and design in a method for Open-edi
can also be motivated by the availability of de facto or de jure standard
architectures for interoperability like CORBA [OMG 1991].

Regardless of the choice of modelling and design approach, the Open-edi
reference model should not define a modelling process per se. It identifies those
aspects of a scenario (i.e. different concepts and components and their
relationships) that must be defined in order to arrive at a complete scenario
specification and the required support services. For each aspect of a scenario
the reference model could recommend suitable methods and description
techniques. These methods and techniques will support the actual modelling
process. In general, an Open-edi method should at least support these four
phases:

analysis of information requirements -> information parcels

identification of agents, responsibilities, commitments etc. -> roles

analysis of behaviour and co-ordination -> role states and synchronisation

analysis of rules, regulations or restrictions -> scenario attributes

The elaboration of these phases and their dependencies could be the starting
point for an Open-edi methodology.

6. Concluding Remarks

In this report we have dealt with the basic properties of Open-edi scenarios,
mainly using conventional notations and models. One objective being to place
Open-edi in the context of information and communications systems modelling.
A careful combination of existing notations and modelling approaches will
probably suffice to model the basic aspects of scenarios. We have, however,
indicated the possibilities of investigating other formalisms for analysis and
representation of commitments, obligations and other constraints that may be
attributable to the user roles of scenarios. An interesting aspect of the Open-edi
reference model is that it may bring together different modelling and design
approaches from various application domains. However, the Open-edi model
in general and the scenario concept in particular, need to be further refined and
strictly defined to enable a proper choice of notations. Regardless of the choice

Effektiv IT — Affdrskommunikation
Svenska Institutet for Systemutveckling 43



of modelling notations, scenario design will also require a methods framework.
Further, the potential acceptance and use of the type standards that will result
from this model, should be investigated more deeply as a part of the future
development.

7. References

Auramaiki, E., E. Lehtinen and K. Lyytinen, (1988), A Speech-Act Based Office
Modelling Approach, ACM TOIS, 6, (2). 126-152.

Avison, D. E. and G. Fitzgerald, (1988), Information Systems Development:
Methodologies, Techniques and Tools, Blackwell Scientific Publications, Oxford.

Azari, M., (1993), Manufacturing Systems Engineering, Doctoral Thesis, 1993, The
Royal Institute of Technology, Dept of Manufacturing Systems.

Blyth, A.]. C,, J. Chudge, J. E. Dobson and M. R. Strens, (1993), ORDIT: A New
Methodology to Assist in the Process of Eliciting and Modelling Organisational
Requirements, Conference on Organizational Computing Systems, Milpitas,
California, ACM Press.

Bolognesi, T. and E. Brinksma, (1987), ISO Specification Language LOTOS,"
Computer Networks and ISDN Systems, 14, 25-59.

CEN/TC251, (1992), PT004 Syntax: Investigation of Syntaxes for Existing
Interchange Formats to be used in Healthcare, Draft Technical Report v 1.1, N318,
November 1992, CEN TC251 PT004.

Chen, P. P., (1976), The Entity-Relationship Model ~Toward a Unified View of Data,
ACM Transactions on Database Systems, 1, (1). 9-36.

Connor, D., (1985), Information system specification & design road map, Prentice
Hall.

Curtis, B., M. L. Kellner and J. Over, (1992), Process Modelling, CACM, 35, (9).
75-90.

DeMarco, T., (1978), Structured Analysis and System Specification, Yourdon Inc.
New York.

Downs, E., P. Clare and 1. Coe, (1988), Structured Systems Analysis and Design
Method —Application and Context, Prentice Hall.

Effektiv IT — Affdrskommunikation
44 Svenska Institutet for Systemutveckling



Fekete, A., (1993), Formal Models of Communication Services: A Case Study, IEEE
Computer, 1993, (August). 37-47.

ISO, (1992), Industrial Automation Systems — Product data representation and
exchange - Part 11 : The EXPRESS Language reference Manual, DIS, 10303-11, 1992,
ISO/TC 184/SC 4.

ISO/IEC, (1991), Guidelines for the application of Estelle, LOTOS and SDL.,
Technical Report, TR 10167, 1991-11-15, ISO/IEC.

ISO/IEC/JTC1/WG3, (1994), Open-edi Reference Model Standard —Working Draft,
Draft, N255, 1994, ISO.

Jensen, K., (1988), Coloured Petri Nets — Basic Concepts, Analysis Methods and
Practical Use, Aarhus University, Denmark.

Johansen, T., (1993), EDIFACT Information Modelling. Message Repository Meta
Model,, 40-RA93025, March 1993, SINTEF Delab.

Kontio, J., (1994), Comparison of Process Modelling Notations for VITAL, ESPRIT 2
Project Report, Nokia/T113/2, NOKIA Research Center/ESPRIT 2 project
ITAL.

Lee, R. M., (1988), Bureaucracies as Deontic Systems, ACM Tr. OIS, 6, (2). 87-108.

Loucopoulos, P. and R. Zicari, (1992), Conceptual Modelling, Databases, and
CASE - An Integrated View of Information Systems Development, John Wiley
& Sons.

Medina-Mora, R., T. Winograd, R. Flores and F. Flores, (1992), The Action
Workflow Approach to Workflow Management Technology, CSCW 92,

MetaSoftware, (1992), Design/CPN MAC Version 1.9.1, Release Notes, May 1992,
Meta Software Corporation, Cambridge, MA, USA.

MetaSoftware, (1993), Design IDEF Tutorial for the IBM PC and Close Compatibles.
V1, Tutorial, 1993, Meta Software Corporation, Cambridge, MA, USA.

Moller-Pederson, B., D. Belsnes and H. P. Dahle, (1987), Rationale and Tutorial on
OSDL: An Object-Oriented Extension of SDL, Computer Networks and ISDN
Systems, 13, (2). 97-117.

Effektiv IT — Afférskommunikation
Svenska Institutet for Systemutveckling 45



Nijssen, G. M. and T. A. Halpin, (1989), Conceptual Schema and Relational
Database Design: A Fact Oriented Approach, Prentice Hall, East Brunswick,
Victoria.

OMG, (1991), The Common Object Request Broker: Architecture and Specification,
OMG Document Number 91.12.1, Object Management Group & X/OPEN.

Peckham, J. and F. Maryanski, (1988), Semantic Data Models, ACM Computing
Surveys, 20, (3).

Peric, K. and F. Simon, (1991), Computer Aided System Engineering for EDI,
Research Report, CR-DTS/91-03, July 1991, SW.LE.T Research & Engineering.

R.J. Wieringa, J.-J. C. M. (Ed.), (1993), Deontic Logic in Computer Science, John
Wiley & Sons.

Rock-Evans, R. and B. Engelien, (1989), Analysis Techniques for CASE: a Detailed
Evaluation, Ovum.

Rumbaugh, J., M. Blaha, W. Premerlani, F. Eddy and W. Lorensen, (1991),
Object-Oriented Modelling and Design, Prentic-Hall.

Schal, T. and B. Zeller, (1993), Supporting Cooperative Processes with Workflow
Management Technology, Tutorial Notes ECSCW'93. Milan, Italy.

Singh, B. and G. L. Rein, (1992), Role Interaction Nets (RINs): A process description
formalism, CT-083-92, Microelectronics and Computer Technology Corp.

SWG-ED], (1991), Report on the Open-EDI Conceptual Model, Report, ISO/IEC
JTC1/SWG-EDI N222-1, 21/5/91, ISO/IEC.

Theodoulidis, C., B. Wangler and P. Loucopoulos, (1992),The Entity-Relationship-
Time Model, in Conceptual Modelling, Databases, and CASE, P. Loucopoulos
and R. Zicari (Ed.), Wiley.

Vanslembrouck, J. and B. Verdonk, (1991), ESPRIT Project KIWIS: A comparison
of service description techniques, Esprit project deliverable, CASE 31, August 1991,
Alcatel Bell, Belgium.

Veijalainen, J., (1992), Issues in open EDI, Research Notes, 1323, 1992, VTT-
Technical Research Center of Finland.

Wangler, B., (1993), Business Rule Capture in TEMPORA, E2469/SISU/
NT3.1/2/1, March, 1993, SISU.

Effektiv IT — Affdrskommunikation
46 Svenska Institutet for Systemutveckling



Svenska Institutet for Systemutveckling,
SISU, bedriver forskning, foljer utvecklingen och
formedlar kunskap om informationsteknologins

tillimpning pé informationsanvindning

och informationsforsorjning i foretag,
myndigheter och andra organisationer.

Institutet verkar inom detta omrdde som

ett opartiskt nationellt kompetenscentrum.



	page1
	titles
	EFFEKTIV IT 


	page2
	page3
	titles
	Concepts and Notations for Open-edi Scenarios 


	page4
	titles
	Contents 
	1. Introduction 
	2. The Open-edi Reference Model 
	3. Notations 


	page5
	titles
	1. Introduction 


	page6
	page7
	titles
	2. The Open-edi Reference Model 
	2.1 Rationale for Open-edi 


	page8
	titles
	2.2 The Open-edi Reference Model 

	images
	image1

	tables
	table1
	table2


	page9
	titles
	2.2.1 The Business OperationaI View (BOV) 

	images
	image1


	page10
	titles
	2.2.2 The Functional Service View (FSV) 

	images
	image1


	page11
	titles
	2.3 Intended use and Users of the Standards 

	tables
	table1


	page12
	titles
	2.4 Requirements on FDTs used to model Open-edi Scenarios 
	2.4.1 Requirements for FDTs used to express a Role 


	page13
	titles
	2.4.3 Requirements for FDTs used to express Scenario Attributes 
	2.5 Introduction to an Open-edi Scenario 
	• 


	page14
	page15
	titles
	3. Notations 
	3.1 Characterisation 


	page16
	page17
	page18
	page19
	titles
	3.2 Example Notations 

	images
	image1


	page20
	titles
	3.2.1 Notations for Process and State Synchronisation 

	tables
	table1


	page21
	titles
	3.2.2 Notations for Information Structuring 


	page22
	tables
	table1


	page23
	titles
	1---' 
	. 

	images
	image1
	image2
	image3


	page24
	titles
	3.2.3 Notations for Activity and Data Flow Composition 


	page25
	tables
	table1


	page26
	images
	image1
	image2
	image3


	page27
	titles
	3.2.4 Notations for Activity Co-ordination 

	tables
	table1


	page28
	tables
	table1


	page29
	titles
	•• 

	images
	image1
	image2
	image3
	image4
	image5

	tables
	table1


	page30
	tables
	table1


	page31
	titles
	3.2.5 Notations for Interchange Formats 


	page32
	page33
	titles
	4. A Scenario Description 
	4.1 Scenario Objectives 


	page34
	titles
	4.2 Scenario Attributes 
	4.2.1 Rules and Regulations 
	4.2.2 Role Relationship Model 

	tables
	table1


	page35
	images
	image1
	image2
	image3
	image4
	image5


	page36
	titles
	4.2.3. 
	Scenario Information Model 

	images
	image1
	image2
	image3
	image4

	tables
	table1


	page37
	titles
	4.3 Information Parcel Model 


	page38
	images
	image1


	page39
	images
	image1
	image2
	image3

	tables
	table1


	page40
	images
	image1
	image2
	image3
	image4


	page41
	titles
	4.4 Rote Modet 


	page42
	images
	image1


	page43
	titles
	ORGAN REQUESTER 
	Figure 4.10: The Organ Requester Role 

	images
	image1
	image2
	image3
	image4
	image5


	page44
	titles
	ORGAN CEN1RE 

	images
	image1
	image2
	image3
	image4


	page45
	titles
	ORGAN DONOR 
	4.5 Usage Case 

	images
	image1
	image2
	image3
	image4
	image5


	page46
	titles
	5. Considering Methods for Open-edi 


	page47
	titles
	6. Concluding Remarks 


	page48
	titles
	7. References 


	page49
	page50
	page51

