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Abstract 
AVANCE is an integrated application development 
and run-time system. It provides-facilities for pr&ram- 
ming with shared and persistent objects, transactions 
and processes. The architecture is designed with decen- 
tralization in mind by having a large object identifier 
space and a remote procedure call interface to objects. 
Emphasis in this paper is on the programming language 
PAL and its relation with the underlying virtual 
machine. 

I, Introduction 
Over the last years there has been an increasing interest 
in object oriented programming languages (OOPLs) and 
object oriented systems. OOPLs range f?om languages 
which simply encourage or at least permit an object 
oriented programming style [Birtw73, Cox86, Strou86], 
to languages which permeate the object oriented “para- 
digm” in every part of the language [Goldb831. 

t This work is supported by the National Swedish Board for 
Technical Development (STU). 

1 AVANCE was previously named OPAL. If is uadet 
development at the University of !3ockhobn and SISU (the 
Swedish Institute for Systems Development). 
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Recently attempts have aIso been made to integrate 
such languages with facilities for making objects per- 
sistent and shared, that is, to provide some kind of data 
base for storing objects [IEEE85 IEEE86]. This has 
been accomplished either by making extensions to 
existing languages [Maier86J, by extending the data 
model of an existing DBMS [Stone86J, or by designing 
entirely new languages and systems miers87]. Idealy, 
the language and the data model should be seamlessly 
integrated. If the language and the data model can 
become one and the same then the programmer is 
relieved of problems such as converting between 
representations suitable for the database and the appli- 
cation.* 
The interest in object-orientation as a basis for design- 
ing and implementing information systems is based on 
the recognition of advantages, both on the level of 
modeling and design, and on the level of implementa- 
tion with the suppon possible for software construction. 
Object-oriented architectures can model reality closely 
by allowing an extensible data model. For the purposes 
of software construction and programming support, 
object-oriented architectures provide modularity, flexi- 
bility, support for change and reuse of software, and for 
generic programming. 
Object-oriented architectures are also promising for 
constructing decentralized and loosely coupled (or 
open) systems [Gray86, Hewit84]. Various forms of 
late binding may be incorporated at strategic points in 
the system to allow for flexibility and openness with 
respect to time, structure, location etc. without 
compromising local consistency. 

2 This is cometimes called providing a single level slore. 
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One can generalize the concept of an object-oriented 
database to what in this paper will be called an Object 
Muiragement System (OMS). An OMS is analogous to 
an operating system in that it provides a complete com- 
putational platform for both development and execution 
of applications. An OMS provides a more homogene- 
ous “world view” than an object-oriented database. Not 
only are both objecttypes and instances regarded as 
objects, but compilers, processes, devices, . . . . every- 
thing available is regarded as an object. No distinction 
is made between a database acting as a repository and 
external applications for providing functions to users. 
In an OMS it should ordinarily not be necessary to go 
outside the system for some particular functionality, 
like application design. As an example, standard 
Smalltalk- could be called an OMS except that mul- 
tiprogramming (true parallelism), sharing and atomic 
operations (transactions) are not available. Gemstone3 
does provide database facilities in a Smalltalk environ- 
ment, but has two object models (the Smalltalk and 
GemStone models) which are not completely unified 
P~y871. 

At this point we want to make explicit two points of 
possible misunderstanding regarding the concept of 
OMS as we use it here. The first concerns the reason 
why we are advocating the OMS architecture. It has 
been pointed out that building a database on top of a 
general operating system creates problems of efficiency 
lStone81, Gray781. Although this may be a reason for 
integrating operating systems with databases, efficiency 
is not our primary concern here. Our primary concerns 
are homogeneity, extensibility and reliability. 

The second point concerns homogeneity. Although the 
goal of an OMS should be to provide all the functional- 
ity users need within the system, it does not have to be 
closed. The homogeneity provided by an OMS is some- 
thing, to be seen as exploitable, not as something con- 
stricting. An OMS should then provide “windows” to 
the outside world, which may be used for reasons of 
efficiency and practicality. If such “windows” to other 
worlds are to be provided then these should also be 
provided in terms of objects. Object-oriented databases 
do have the advantage that they will probably be more 
efficient when integrated with existing systems. This is 
because object-oriented databases are often &signed as 
servers [Homi87, Purdy87]. while an OMS is primarily 
designed to serve itself. Because an OMS is more than 
a database, it should be possible, given the appropriate 
primitive types, to design the appropriate objecttypes 
making the OMS behave as a server. However, since 

3 Gedhne is a registered tmdematk of Sewio Logic 
Development Corporation. 

the OMS is not optimized for serving external applica- 
tions it will probably not be able to compete as a gen- 
eral server with object-oriented databases, or DBMS 
tool-boxes such as EXODUS [CareyW. 

Homogeneity encourages the reuse of software and the 
incremental development of applications. It also makes 
it simpler to keep the entire system consistent. How- 
ever, it may also create problems. One problem that an 
OMS must face, that object-oriented databases do not 
have, is the interference between transaction manage- 
ment and user interface management. If there is a strict 
borderline between the database and applications, then 
transaction management naturally is the responsibility 
of the former, while user interface management is the 
responsibility of the latter. In an OMS no such strict 
borderline exists and as a consequence the relationship 
of transaction- and user interface management needs to 
be reexamined. 

AVANCE [Ahlse84, AhlseW, is a research prototype 
OMS. It is a fairly large and complex system. This 
paper focuses on the language PAL, and the parts of 
AVANCE of concern to the programmer. AVANCE 
supports. among other things, sharing of persistent 
objects, nested transactions, object version management, 
decentralization of both data and control, a strongly 
typed compiled programming language, and a weakly 
typed interpreted command language. Aspects of 
AVANCB which will not be discussed ln this paper are 
the user interface, authorization, exception handling, 
views, and triggers. 

Decentralization is an important aspect of AVANCE 
and this has had effects on the system design. Semantic 
issues of type equivalence, type changes, and naming 
have been addressed. Although decentralization has not 
been fully implemented yet in AVANCE, much effort 
has been made in the design to make this step as pain- 
less as possible. AVANCE is a running system. The 
implementation effort so far has focused on architec- 
tural issues and not on the user interface, the type 
library, or development tools. 

Of the other systems we have looked at the one perhaps 
most similar to AVANCE is VBASE [Andre87]. 
VBASE emphasizes an integrated language and data- 
base environment, with database facilities more power- 
ful than what is currently available in AVANCE. For 
example, AVANCE does not have system support for 
bidirectional relationships (one-to-one, one-to-many 
and many-to-many). On the other hand AVANCE will 
support decentralization which seems to he missing 
from the VBASE architecture. In this respect AVANCB 
is more like the Emerald system [Black86]. 

The paper is structured as follows. Fit an overview 
of AVANCE, then the PAL programming language, and 
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finally, the AVANCE virtual machine. 

2. Overview of AVANCE 
The architecture is designed to provide three levels of 
abstraction to implementors. Figure 1 illustrates the 
static system software components of AVANCE. 

PAL PAL 
command compiler 
interpre- 
ter 
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Packet-slice manager 
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Low level virtual 
Cache manager Object machine. 

manager. 

Secondary storage 

n-ww 
.1 

Figure 1: The static system 
soltware of AVANCE. 
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Tbe second level of abstraction is the virtual machine 
interface provided by the pseudo-machine code (p-code) 
interpreter. It has similarities with the Smalltalk- vir- 
tual machine [Goldb83]. ‘The interface provided by the 
p-code interpreter is essentially a stack machine which 
understands a set of primitive datatypes and an instruc- 
tion repertoire to operate on these, The interfaces pro- 
vided by the object manager and the p-code interpreter 
are not intended for human interaction. 

The third level of abstraction is the high level language 
PAL. A compiler translates PAL, into the pseudo. 
machine code of the virtual machine. It is at this level 
that the full power and homogeneity of an OMS is 
available. Most users / programmers would only use 
this level of abstraction. 
The low level object manager is relatively independent 
of the p-code interpreter, and the p-code interpreter 
relatively independent of the PAL compiler. Thus it is 
possible to have several alternative interpreters on top 
of the object manager, and several different compilers 
on top of an interpreter. This makes it possible to have 
several different programming languages and virtual 
machines, or different versions of them simultaneously 
running in the system. Presently, besides the pcode 
interpreter and PAL compiler already mentioned, there 
is only a simple command language interpreter which 
directly executes a subset of PAL. 

2.1. Object Granularity 

The world of objects in PAL is partitioned into two dis- 
joint sets: packets and dututype values. Both packets 
and datatype values are instances of abstract datatypes. 
By this is meant that they have an internal hid&n 
representation and the only way to operate on a packet 
or a &tatype value is by using an operation de&red for 
thetype* 

2.1.1, Packets 
Packets are associated with persistence, independent 
existence, synchronized sharing, resiliency [Svobo84], 
atomicity [Lisko83], and system version control. Pack- 
ets are identified by non-reusable surrogates allocated 
when the packet is created. ‘ihe identifier space is very 
large in order to allow global identification in a decen- 
tralized / dimihuted system. Packet identifiers are only 
used as components of packet references, and are not 
dim&y available for manipulation outside the object 
manager. Packets may be aggregated by the use of 
packet references. into any directed graph structure. 
Packets maybe shared between AVANCE processes. 
A Packet is roughly comparable to a monitor 
[Hoare74], in that it synchronizes processes which 
invoke operations on it. A packet operation invocation 
is a remote procedure call. In other words, arguments 
and return values are passed by value, the invoker is 
blocked until the invoked operation returns control, and 
the details of communication protocol and emr detee- 
tion are hidden from the programmer. Packets resemble 
Guardians in Argus Lisko831 in that they are persistent 
objects with remote procedure call handlers. They 
differ from Guardians in that they are generally not 
active by themselves (they do not have their own thread 
of control). 

2.1.2. Datatype Values 
Datatype values do not have independent existence. For 
a datatype value to be persistent it has to be assigned to 
an instance variable of a packet. Datatype values never 
overlap, that is, every instance variable contains a 
“private” value, and assignunent of values between vari- 
ables will entail a copying of values. This makes gar- 
bage collection relatively simple4. but reduces the 
efficiency of the system. The only way for two or more 
objects to share an object is by using references to a 
common packet, 

4 &&age cc&ctiott of datatype values is handled automrti- 
ally by the vittull machine. Glttwgc wllcctioll of plckG~ ha1 
not been imphncntcd yet. but the intentiot~ is to do it by pg- 
ing unreachable packets on a per-node basis (see sectiat 2.2). 
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Datatype values have significantly less overhead than 
packets. The operations of datatypes can be imple- 
mented rather efficiently, compared with the operations 
of packettypes, since no overhead for persistency, syn- 
chronization, version control etc. is needed. Further- 
more, datatype values are not assigned system unique 
identifiers (like packets), since they are not persistent, 
independently existing objects. This also reduces space 
and time overhead. For example, the object space is 
not “polluted” with huge amounts of small or temporary 
objects. Unless a datatype value has been assigned to 
an instance variable of a packet or given as a return 
parameter, it will be garbage collected when the packet 
operation which created it returns. Depending on these 
differences in properties, the designer can decide 
whether to implement a type as a packettype or data- 
type. 
The PAL programmer defines the internal representa- 
tion of a type (both packet- and datatypes) in terms of 
datatypes, i.e., by declaring instance variables on data- 
types. Packets can not be directly incorporated in the 
internal representation of a type, instead the reference 
datatype is used The packet reference datatype is the 
“bridge” between the &tatype type system and the 
packettype type system. A programmer may create a 
datatype which in its representation has packet refer- 
ences, thus the distinction between packettypes and 
datatypes as the former being persistent etc. and the 
latter not must be taken in a shallow se&. 
The p-code interpreter implements a number of primi- 
tive datatypes. Most of these directly correspond to 
datatypes at the PAL level and are available to the PAL 
programmer, while some of them are only used by the 
compiler for its own purposes. 

2.2. The AVANCE Logical Network 
Tbe large scale architecture of an AVANCE system 
consists of a logical network of nodes6 (see figure 2). 
Each node provides a centralized information proccss- 
ing environment, suitable for an “organizational unit” 
requiring authority over processing and data. Protection 
of data is handled within a node. Each node resides on 
a physical machine host. Each node may become una- 
vailable for communication with other nodes in the sys- 
tem. This may be because the administrator of the node 
has decided to close it, or due to a crash of the node or 
host, in which case the node closes without warning. 

’ The word shallmv should be taken iu the sense of shal- 
1uwCupy or decpCupy in the Object instance pmtod of 
smalltalk-80. 

6 ‘Ike implemmration of AVANCE has currently only prw 
gresscd far enough to m single nodes in isolation. 

Host 2. 

ci!Q 

I Host 3. cQHd4- 
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Figure 2: The coarse structure 
of an AVANCE system. 

Nodes are thus relatively autonomous and what unites a 
set of AVANCE nodes into a system is the adoption of: 
0 a common identification scheme for packets, 
l a common representation form for all packets and 

datatype values, 
l a communications protocol between nodes, and 
l a common set of packettypes and datatypes. 
These four points will be detailed in section 4.2. We 
require that all nodes run the same version of object 
manager software.7 The reason for this is that the 
object manager maintains a lowest level of consistency 
in the system. Identification scheme, representation 
form, and communication protocol are all defined at 
this level. In practice, nodes will also mn the same 
interpreter(s). If nodes arc to have any meaningful com- 
munication they will at least have to agree on a set of 
common primitive datatypes. But, as mentioned earlier, 
they could run different versions of the same inter- 
preter, or different interpreters with some primitive 
datatypes in common. 

3. The PAL Programming Language 
PAL is a high-level, block structured language pri- 
marily inspired by Simula [Birhv733, Smalltalk- 
[Goldb83], and CLU lJ,iskoSl]. It contains facilities 
for both defining and manipulating objects. In addition 
to ordinary programming language constructs, func- 

’ AVANCE is implemented on Sun UNIX using the C pro- 
gramming language. For the forscable future we rcquim all hosta 
to be Unix machines. 
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uonality for persistency, version management, con- 
currency and decentralization are supported. Facilities 
to support exception handling and triggers are currently 
under development [AhlseS7]. 
All facilities are completely integrated within PAL. 
Hence, there is no difference between, on the one hand 
defining and manipulating “program objects” and on the 
other hand defining and manipulating “database 
objects”. PAL+ supports typing, property inheritance, 
data abstraction, encapsulation, instantiation and both 
dynamic and static binding within a homogeneous 
environment. Not only “data”, but also “meta-data”, 
are represented as objects. 

In spite of its strength, PAL is a fairly small language. 
This is thanks to the extensible data model and the uni- 
formity possible with object-orientation. A limited 
number of syntactical constructs and pre-defined object- 
types cover most basic needs. What is not covered can 
usually be added by &fining new objecttypes. Logi- 
cally, there is no difference between pre-defined and 
user-defined objecttypes. 

3.1. Typing and Instantiation 
In order to illustrate the capabilities of PAL as a design 
and implementation tool a simple electronic mail appli- 
cation will be used as an example. 

Figure 3: Conceptual model of e-mail application 

A user gets access to the mail system by executing an 
operation main on an instance of the MailProgram.g In 
order to be able to receive letters a user must be 

* MailProgram is actually I subtype of Application, which 
is a systemdefined packettype (see below). It is debatable 
whether UaiJProgrum and Appkahon really are conceptual en- 
tity types. They have been included here only for reasons of 
completeness. 

registered in MailUsers. The mail user register is used 
by the application for looking up the recipients 
mailbox@) when sending letters. A Mailbox is associ- 
ated with each registered user. All unread letters are 
stored in this. Letter is the type of object communi- 
cated among users. Letter is a subtype to Document, 
which is assumed to be a generic “business document”, 
generalizing properties of letters, memos, reports, etc. 
The letter contents type, finally, is called Message. 

As packettypes and datatypes have somewhat different 
semantics one has to decide whether to define each 
entity type in the conceptual model as either a packet- 
type or as a datatype. In the e-mail application Docu- 
ment, Letter, Mailprogram, Mailbox and MailUsers 
are defined as packettypes. The primary reasons for 
this is that we want objects of these types to have an 
independent existence or to be shared among users. 
Message (the type of the letter contents) is defined as a 
datatype. This is possible since a message is always 
associated with a letter (which is a packettype) in a 
l:l-fashion. If we wanted the ability to send the same 
Message object in more than one Letter, then we 
would also have made Message a packettype. 
In order to have a running e-mail application the 
objecttypes above must be programmed, compiled, 
installed and instantiated. In principle, any number of 
instances may be created of a type. In this example, 
however, there must be exactly one instance of 
MailUsers since this object will act as a central regis- 
ter. In generaI, some types need not be instantiated. A 
type without any instance variables does not need any 
instance to execute. A “program” in the traditional 
sense (without private persistent data) would be imple 
mented as an operation which does not access any 
instance variables. In this case it would not make any 
difference whether the type was implemented as a 
packettype or as a datatype. There may also be types 
which are not intended to be instantiated as the most 
specialized type of an instance. These are called 
abstract types and are used only to generalize proper- 
ties of subtypes. As in Simula and C++ an operation 
may be declared virtual in order to defer the imple- 
mentation to subtypes. Document is an example of an 
abstract type. 

32. Property Inheritance 
Both datatypes and packettypes are organized in pro 
perty inheritance “trees”. As multiple inheritance is 
supported the inheritance “tree” is rather a directed acy 
clic graph. In figure 4a, parts of the inheritance graph 
for primitive datatypes (strongly inspired by Smalltalk) 
is shown. Indentation means property inheritance. 
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Primitive Datatypes 
l Value 
. . Boolean 
l l Magnitude 
l l l Date 
l a*Number 
l l l l Integer 
. . ..Real 
l l Compiler 
l . Parameterized 
l l l Collection 
l l l l Sequence 
l l l . Bag 
l l l Reference 
l **PTOCC% 

(a) 

System-Defined Packettypes 
l Packet 
l l Node 
l l DirectoryEntry 
l l l Directory 
l l l Application 
l l l l TypeDef 
l l l l l DatatypeDef 
l l l l l PackettypeDef 

Figure 4: Some Pre-Defined Objecttypes 

-1 

1 
-I 

Since datatypes and packettypes have different seman- 
tics, a datatype cannot be a subtype of a packettype and 
vice versa. Therefore, a separate inheritance graph is 
constructed for packettypes. In figure 4b, some 
system-defined packettypes are shown. 

All datatypes and packettypes must, directly or 
indirectly, be a subtype to Value or Pucker respec- 
tively.g Hence, user defined objecttypes may not form 
separate inheritance graphs. If a new objecttype is not 

explicitly declared to be a subtype of an existing type, 
it is assumed to be a subtype of one of the two root- 
level objecttypes. 
Some datatypes are type parameterized (unlike 
Smalltalk), e.g., Collection. Sequence, Army, Set, and 
Reference. Parameterization can be seen as a weak 
form of inheritance. A parameter&d datatype is usu- 
ally a structured type where the parameter specifies the 
type of its’ component(s), e.g., List{lnfeger), 
List(Char), and Array(Lisr(Set(hteger))). The Refer- 
ence datatype (Ref for short) is a special case in that it 
is parameter&d with a packettype, while most other 
parameterized types are parameter&d with a datatype. 
An instance of Ref is a handle to a packet of the type 
the parameter specifies, e.g.. Ref(Letter), and 
ReflMailbox). 

3.3. Data Abstraction and Encapsulation 
Following the data abstraction philosophy, objecttypes 
are defined in terms of a specification and an imple- 
mentation. These parts are defined separately and may 
also be compiled separately. An application may be 

9 This is a constraint enforced by the PAL compiler and not 

inherent to the object manager. 
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defined purely by specifications and these compkd 
before the corresponding implementations exist. After 
this several programmers may work independently on 
the implementations. The PAL compiler ensures that 
specifications are type compatible with each other and 
that implementations conform to their specification. 

33.1. Specifications 

An objecttype specification consists of three optional 
parts: a context part, a public part, and a private part. 
In the cOntext part supertypes plus packettypes and 
datatypes that this particular objecttype needs to have’ 
access to are stated. Note that primitive datatypes need 
not be stated. The public part contains declarations of 
operations that are available to all other objecttypes. 
which use this type. The private part declares opera- 
tions that are available only to subtypes of this object- 
type and to itself for operating on itself and other 
instances of the same type. Operations may return mul- 
tiple results (as in CLU). 
A specification thus defines two interfaces. The inter- 
face provided by the public operations for external use, 
and the interface provided by both the public and the 
private operations for use by subtypes and in its own 
implementation. The private operations makes it possi- 
ble to provide tools to implementors of subtypes, 
without making these tools visible externally. The 
private operations also serve another purpose. It is 
sometimes necessary for a type to operate on more than 
one instance of itself in the implementation of an 
operation, e.g., anInteger.add(anotherInteger). In CLU 
this is handled by an explicit conversion of abstract 
objects to their representation. In PAL the problem is 
solved by defining a private operation returning the 
internal representation. If we only had the public inter- 
face then the operation would be accessible to any 
other objecttype, which would violate encapsulation.1o 
The packettype specifications for Document and Letter 
in the e-mail example look like this: 

lo Because the private operations serve two different pur- 
poses, as an interface towards subtypes, and as an interface to- 
wards other instances of the same type, we long deliberated over 
whether to have three interfaces in the specification. We decid- 
ed against this because we thought the price in terms of a more 
canplicated language was not wottb the added security. Bolh 
purposes of the private operatiars also in a sense serve imple- 
mentors of “one” type 
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PACKE’ITYPE Document; 
SPECIFICATION 

P Generic “Business Docummt” +/ 
PUBLIC 

OPERATION Satd(mailboxcs : Liit(Ref(Mailbox)); To:List(Tcxt)); 
VARIABLE P Send letter to listed recipimts l / 
mbox : Ref(Mailbox); 

BEGIN 
OPERATION Edit(author : Text); VIRTIJAL; @DateSent:=DatcTcday(); 
OPERATION toListOfhxt0 : List(Text); VIRTUAL; @contents.putHeade&etAuthorQ To, @Date&& 
OPERATION getAuthor() : Texs FORBACH mbox IN mailboxes DO 

PRIVATE mboxSDeliverMail(SJ3I)LF); 
OPERATION putAuthor(name : Text); 
OPERATION putLastUpdate0; 

END Documcn~ 

ENDsend; 
. 

PACKB’ITYPE Letteq 
SPECIFICATION 

P The type of objeu cunmunicati among users l / 
CONTEXT 

SUPERTYPE Document; 
PACKETl’YPE Mailbox 
DATATYPE Message; 

PUBLIC 
OPERATION Send(maiIboxcr : List(Ref(Mailbox)); To:List(Text)): 
OPERATION getDat&nt() : Date: 

END Leacr. 

The context part of Leffer states that it is a subtype to 
Document and that it must have access to the Mailbox 
packettype and the Message datatype. Two public 
operations are declared - Send and getDateSent. No 
private operations are declared. Letter inherits the con- 
text and al1 public and private operations of Document 
and Pucker. Pucker is an implicit supertype of Docu- 
ment. PAL-defined datatypes are almost identical to 
packettypes syntactically. 

All public and private operations declared in the 
specification must be defined in the implementation. 
The implementation of an operation simply adds to the 
operation heading optional local variables and a com- 
pound statement. In addition, operations local to the 
implementation may be defined. Such operations are 
only available internally in the implementation for 
operating on SELF. SELF is a pseudo-variable desig- 
nating the object instance that executes the code. In the 
example above SELF would implicitly be of type 
RefL.etter). 

3.3.2. Implementations 
An objecttype implementation consists of two parts, a 
representation and an operation implementation. The 
representation defines instance variables used to hold 
the object state. The operation implementation defines 
operations. Below, parts of the implementation of 
Letter is shown: 

PACKEITYPB Ltttcr; 
Ih4PLBMBNTATION 

ATTRIBUTE 
contents : Message; 
DateSent : Date; 

OPERATION Edit(author : Text); P Bdii letter contents */ 
BEGIN /* virtual op implunul!atim */ 

@conlents.put.sody(Stio.Edit(@~~~.g~B~O)); 
putLastUpdate0; 
putAutbor(author); 

END Edit; 

The representation of an object is defined in terms of 
instance vatiables. Instance variables in packettypes 
are called attributes. Letter, above, has two attributes, 
contents and DateSent. In statements ‘@ ’ must precede 
an attribute. This is to remind programmers of their 
semantics (persistence), and that there is generally a 
difference in access cost between attributes and other 
variables. Instance variables of an object are not 
directly accessible from other objects. Hence, in order 
to let users modify the contents of a letter an Edit 
operation has been defined. Edit is declared in the 
specification of Document as a virtual operation. At 
run-time the object manager will dynamically bind an 
invocation on a virtual operation to the implementation 
provided by the most specialized type that the packet 
(or value) is an instance of. Declaring an operation vir- 
tual in a specification implies two things for implemen- 
tors of subtypes. First, the operation may not be over- 
ridden in the specification of a subtype. Second, a sub- 
type must have its own implementation for the opera- 
tion (and it must conform to the inherited specification). 
Virtual is used when the representation of an object- 
type, which strongly affects the implementation of an 
operation, is not known at the level of generalization 
where the operation is specified. For example, the 
representation of Letter (i.e.. contents : Message) is not 
known when the operations on Document are defined. 
Note that strong type checking is retained for both 
static and dynamic binding.tl 

I1 It is a sanetimes held misconception that strong typing 
and dynamic binding am in catfliu. Stmng typing may be used 
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3.4. Object Management 
In PAL, object instances are manipulated through 
expressions and statements. Below is an incomplete 
syntax for expressions: 

Expression = 
[ Object InvokeOperator ] OperationCall 
( InvokeOperator OperationCall ). 

Normally, an operation call (operation name and actual 
parameters) is preceded by an object (variable, literal, 
or the result of an expression) and an invoke operator 
(dot or dollar), e.g.: 

mbox$DeliverMail(SELF); 
The statement above means: invoke the DeliverMail 
operation on the packet referenced by the variable 
mbox and pass the value of SELF as parameter. The 
‘$’ operator is used for packettype operations and ‘.’ 
for datatype operations. This reminds programmers 
about the difference in semantics and cost between 
operations on packets and datatype values.12 If an 
operation is not preceded by an object, the object is 
assumed to be SELF. Operations can also be chained 
by directly invoking an operation on the result from 
another invocation. Chained operations are evaluated 
left-to-right. 

Variables (and attributes, which are simply a special 
kind of variable) are distinct from datatype values in 
PAL. A variable should be seen as a container for a 
datatype value. When a datatype value is assigned to a 
variable, the previous datatype value will be replaced 
and garbage collected. Hence, assignment is not an 
operation on a datatype value, but on a variable. when 
an operation does not access any instance variables it is 
possible to invoke the operation directly on the type 
object, e.g.: 

@DateSent := Date.Today(); 
Dare is a primitive datatype and the operation ~oduy is 
an operation independent of any particular instance. 
PAL does not have updatable class variables in the 
sense of Smalltalk-80,13 i.e., variables accessible to all 
instances of a class. Only class constants are allowed. 
Class variables do not agree well with decentralization. 

In order to instantiate a packettype the Create opera- 
tion is used. 

for at least two purposes: safety and efficiency. It is possible to 
use strong typing for the purpose of safety alone and still have 
dynamic biding. 

l2 Actually there is an additional reason for this. In order to 
be able to opemte on a value of the Ref datatype and not on the 
packet it mfenznces there must be a way to syntactically distin- 
guish the two cases. 

l3 There are no global or pool variables either. 
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MyLetter := Letter!!CreateO; 

The Create operation does not access any instance 
variables and so may be invoked directly on the type. It 
creates a new instance of Letter, and calls an operation 
Initialize on the newly created instance, which initial- 
izes its attributes. Finally, the reference to the instance 
is returned. The reference must be saved, in a variable 
or attribute, or else the packet will become unreachable. 
Datatype values are created and initialized automati- 
cally by declaring a variable on the datatype. 
Traditional programming languages provide an algebra 
(operators + operands) for manipulating data. In such 
languages the interpretation of an operator is fixed 
within a global and static type system. In PAL, and 
other OOPLs, the interpretation of an operation depends 
on the object on which it is invoked For reasons of 
convenience PAL provides an “algebra” as an alternate 
syntax. However, the semantics is still object-oriented 
as the “algebra” is transformed into object-oriented 
form by the compiler. Hence, expressions such as 5+6 
are transformed to 5.add(6).14 
In addition to assignment statements and expressions 
there are also control structure statements, e.g., if, 
while, repeat, foreach, and return. 

Compiled PAL is strongly typed.. Sometimes, however, 
the type check must be deferred until run-time. For 
example, if the variable &c is declared to be of type 
Ref(Docwnent), then 

doc!§getDateSent() 

would not be allowed since getDuteSent() is only 
defined for letters. By requalifying dot to be of type 
Letter the expression becomes type correct: 

doc:Ref(Letter)$getDateSent() 
But, whether or not dot actually references a letter will 
only be known at run-time. The compiler will generate 
the code needed to perform a run-time type check. 
The example above is called downward type 
qualification (downward in the inheritance graph). 
Upward type qualification is always possible. No run- 
time type checking is needed in this case. 

3.5. Comments on Data Abstraction 
In PAL property inheritance means strict inheritance of 
specification and default inheritance of implementation 
(as in Trellis/Owl [§chafl36]). It is possible to override 
operations declared in a supertype. For virtual opera- 
tions the implementation in the supertype must be over- 

l4 Although the set of operators is currently fixed and hard- 
wired into the compiler, the operands do not have to be of a 
primitive type. 
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ridden in all subtypes. When overriding the implemen- 
tation of virtual operations, the types of formal panme- 
ten may be generalized and formal results may be spe- 
cialized. For standard operations overriding is only 
possible by overriding both the specification and the 
implementation. However, this overriding will not be 
effective on variables or references declared to the 
supertype, because of static binding. 

In PAL it is possible to control the binding caused by 
virtual by using the invoke operator ‘$$’ instead of ‘$‘. 
This operator will cause static binding to be used, even 
if the operation is declared virtual. This is normally 
used only in the implementation of a virtual operation 
where access to the supertype’s implementation is 
needed. For example the implementation of the opera- 
tion toList0jText in Letter could invoke the implemen- 
tation of this operation in Document by the code: 

lst:List(Text); 

1st := SELF:Ref(Document)$$toListOffext(); 
The ‘$$’ operator is a more general mechanism than 
the use of the pseudo-variable ‘super’ in Smalltalk-80, 
since it may be. used anywhere. It is less general than 
the mechanism in VBASE [Andre871 for method com- 
bination. However, the use of the ‘$$’ operator for 
other purposes than invoking implementations of virtual 
operations in supertypes is discouraged, since it sub- 
verts the normal use of dynamic binding. 

One problem with the virtual construct is that it is not 
possible for a designer of a subtype to alter the choice 
of which operations have been declared virtual in the 
supertype. In other words, it is not possible for the 
designer of a subtype to choose which inherited opera- 
tions are to be invoked with dynamic binding of imple- 
mentation. A designer could avoid the problem by 
always declaring every operation in the specification as 
virtual. As in Smalltalk-80, dynamic binding would 
then always be used. On the other hand this would 
also generate the additional overhead associated with 
dynamic binding, for every invocation. 

In AVANCE we have added a mechanism to the object 
manager, and language constructs in PAL, which allows 
a designer to declare a supertype as abstract in the 
context section of a new subtype. This will cause the 
subtype to inherit only the specification of the super- 
type. Invocations of any operation on instances of the 
subtype will be dynamically bound, even if the invoca- 
tion is made from a type compiled against the super- 
type. We use one bit of a bit-vector component in 
packet references (see figure 5 in section 4.1) to indi- 
cate whether or not dynamic binding always should be 
used. Instances created from types which have declared 

one or more supertypes as abstract will get this bit set 
in the reference returned by the Create operation.15 
Normal invocations, which use static binding, will have 
the added overhead of a test on one bit which is negli- 
gible. Invocations on virtual operations will not be 
affected. Invocations which would have been static, but 
which find the bit set will have an overhead which is 
greater than that of virtual. This is because the object 
manager has to convert the static binding invocation 
into one of dynamic binding and this will involve extra 
searching at run-time. 

Since declaring a supertype as abstract will cause extra 
overhead on all invocations on all instances of the new 
type (and all instances of subtypes to the new type), the 
designer might be reluctant to use this mechanism. Still, 
the mechanism is there for use in case it is needed. 
In PAL endapsulation is also upheld between a type 
and its subtypes. Thus, it is not possible to directly 
access instance variables declared in a type from one of 
its subtypes. That is why operations such as putlus- 
tUpdute and putAuthor are invoked from the Edit 
operation in Letter in order to modify attributes in 
Document (of which Letter is a subtype). This strong 
form of encapsulation is important from a software 
engineering perspective, as argued by. Snyder 
[Snyde87]. For packettypes it also naturally maps to 
the mutual independence of packet-slices at the object 
manager level (see section 4). Wegner has argued that 
distribution is inconsistent with inheritance CWegne871. 
AVANCE/PAL is a counterexample to this. The 
different slices of one packet may be distributed over 
several nodes. This is possible because the representa- 
tion of a packettype is not inherited explicitly. Com- 
munication between the different types of one packet is 
only allowed through packet operations (having the 
indirection of a remote procedure call) and not by 
shared instance variables. 
For datatype values the argument for this strict form of 
encapsulation is not quite as strong. The representation 
of a datatype value is always maintained as one unit 
and can not be distributed in the way a packet can be. 
In fact it has been argued that access to the representa- 
tion of a type from descendants is often desirable for 
reasons of reusability ([Meyer881 pp 272-274). 
Because of this we may in the future relax the encapsu- 
lation of datatypes (not packettypes) to allow subtypes 
to access the instance variables of a supertype. 

1s Datatype values are not identified and manipulated by 
references, but each value of a user-defined datatype. internally 
has a reference to its executable type slice. The corresponding 
bit may then be set in this reference. 
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3.6. Local Consistency and Interpreted PAL 

Since PAL is strongly typed and at the same time type 
extensible without going outside the system, there must 
be some “loopholes” for adding new functionality to the 
system. One such loophole is the virtual construct 
which through dynamic binding allows a type to 
operate on instances of yet to be defined types. This 
requires that specifications be known a’priori at least 
for entry-points to applications. A designer may create 
a subtype to packettype Application which has a virtual 
operation main declared in its specification. This gives 
a standardized entry-point and for most purposes this is 
enough. 

There are still some cases where it may be needed to 
construct calls on objects where the objects type 
specification is unknown (or not completely known) at 
compile-time. PAL has a pre-defined datatype Znvoca- 
tion for this purpose: 

DATATYPE Invocation; 
SPECIFICATION 
PUBLIC 

OPERATION putInstance(instance : Value) : Invocation; 
OPERATION putOpName(opname : Text) : Invocation; 
OPERATION putArgs(args : List(Value)) : Invocatim; 
OPERATION putRetVah(mvals : Integer) : Invocation; 
OPERATION invoke0 : Invocation; 
OPERATION getRetVal(retval : Integer) : Value 

END lnvocatioIl: 

The following would prepare a call on the Edit opera- 
tion of a document 

invoc : Invocation; 
dot : Ref(Document); 
1st : List(Value); 
author : Text; 
. 
. 

invoc.putInstance(doc).putOpName(”Edit”). 
putArgs(lst.insert(author)); 

A value of Invocation is just like any other datatype 
value, it may be passed around as a parameter, kept 
persistently in an attribute, etc. To actually evaluate 
the invocation the operation invoke is used. PufRet- 
Vals and getRetVa1 are used if return values are of 
interest. The arguments passed to an operation when 
using an Invocation value consists of a list of values. A 
run-time check (downwards qualification) will be done 
for each argument. Similarly, return values are simply 
values and must be qualified to something more specific 
if they are to be used. The actual invocation is done 
using the same mechanism (in the object manager) that 
is used for the virtual construct. 

We require objects to maintain local consistency. By 
this we mean that an object may operate on other 
objects of any type as long as it has certified by 
qualification that the other object conforms in 
specification to one of the types in its own context. In 
the case of parameter passing it is up to the invoker to 
supply type correct arguments and the invokee to suply 
type correct return values. 

For purposes of bootstrapping and prototyping 
AVANCE has a second interpreter, besides the p-code 
interpreter (see fig 1.). This interpreter directly executes 
a subset of PAL. In operating systems terms it 
corresponds to a command language shell. Input to the 
PAL interpreter is a List(Text) object where it parses 
one line at a time and attempts to execute it. It uses a 
less strong form of typing than compiled PAL and is 
prepared to handle any of a number of exceptions gen- 
erated by the object manager layer. All invocations, 
except invocations on primitive datatypes, use the 
dynamic binding mechanism of the object manager. If 
the interpreter encounters the operation Znteruct() it 
will obtain lines of input interactively from the user 
until the user writes the command retrunt). 

3.7. 

The 

Homogeneity 

distinction between packettypes and datatypes in 
PAL is a disadvantage from the perspective of homo- 
geneity. It might be argued that the decision on whether 
an object should be persistent or not should be made 
automatically by the system. We introduced the distinc- 
tion mainly because it simplified the implementation of 
AVANCE enormously. For example, the “small object 
problem” is considerably reduced. A programmer which 
is unsure whether to implement an objecttype as a data- 
type or as a packettype should probably implement it as 
a datatype. A corresponding packettype with its 
increased overhead is easily made if needed, by encap- 
sulating a datatype value in an attribute and writing the 
corresponding (trivial) packet operations. The reverse 
is also possible: encapsulating a reference to a packet in 
a datatype. But this will not undo the overhead. 

Not only programs and data, but also me&data (object- 
types) should be objects in an OMS. An objecttype is 
a description of a set of instances in the system. How- 
ever, objecttypes can also be regarded as instances of a 
meta objecttype. To represent objecttypes PAL has a 
predefined packettype TypeDef. TypeDef is specialized 
into DatatypeDef and PackettypeDef. This view is 
necessary since we want to instantiate new types from 
within the system and add them incrementally without 
having to recompile the whole system. A new packet- 
type (or datatype) is created by making an instance of 
PackettypeDef (or DatatypeDefi. For example, Letter is 
instantiated from PackettypeDef and made a subtype of 
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Documenr, which is also instantiated from Packzt- 
typeDef but a subtype of Packet. Letter may in its turn 
be instantiated into ordinary letters. The meta object- 
types define a representation for PAL source code, p- 
code (compiled code), and operations for manipulating 
the representation, e.g., EditSpecijication, EditImple- 
mentation, CompileSpecification, and Compilelmple- 
mentation. 

In order to take advantage of the uniformity a “data- 
dictionary” facility is created by the compiler. A few 
extra operations are generated automatically for every 
objecttype.16 Among these are getTypename, getopera- 
tions, and getParameters. Hence. any object can be 
queried about its type properties. This is good both for 
learning about objecttypes (in interpreted PAL) and for 
constructing objects where the logic is affected by 
“me&data”. 

3.8. Processes 

An AVANCE process is the root of an invocation tree. 
Processes are created and manipulated using the 
parameterized Process datatype which is similar to the 
C&X objects of ConcurrentSmalltaIk [Yokot87] and 
the futures concept of actors [AghaS7]. Any PAL 
expression (not statement) may be executed in its own 
new process by placing it in square brackets. The fol- 
lowing code segment starts separate processes for send- 
ing a letter to all mailboxes: 

FOREACH mbox IN mailboxes DO 
[ mbox$DeliverMaiI(SELF) 1; 

The value of the bracketed expression above is of type 
process(). l7 In the above case the invoker is not 
interested in any result returned by the expression. To 
be able to obtain the result of executing a process the 
process value must be retained. 

pi-c : Process(Integer); 
itg : Integer; 

pie := [1+2]; 

itg := prc.result(); 

In this example the integers 1 and 2 are added in their 
own process. Later the result is fetched and assigned to 
the variable itg. The expression [I+21 returns immedi- 

16 They are virtual operations in both Packet and V&U. 

17 Because the DeliverMail operation of Mailbox d-s not 
return anything the Process value is pmmeteriz.cd with nothing. 

ately with a process value which is assigned to prc. The 
prc.result() expression synchronizes with the other pro- 
cess to obtain the result, i.e., if the other process is 
finished then the value is returned, otherwise the calling 
process will wait. 

The only means of communication between processes is 
through shared access to packets and the initial and 
final passing of arguments and return values via the 
Process object. 

4. The AVANCE Virtual Machine 

The distinction between packets and datatype values is 
reflected at all three abstraction levels of the axchitec- 
ture (see fig 1). A packet at the level of PAL is 
represented by a set of packet-slices at the level of the 
object manager. The object manager provides a single 
level store for packet-slices, handles references to 
packet-slices, and controls the execution of processes. 
What unites conceptually a set of packet-slices into one 
abstract packet is a common identifier. A packet-slice 
consists of a set of persistent attributes belonging to 
one specific packettype. The usual reason that a packet 
is represented by more than one slice is property inheri- 
tance. For each type that a packet is an instance of 
there will correspond a slice, containing exactly the 
attributes belonging to that specific type. However, the 
slices of a packet are independent from each other from 
the perspective of the object manager, and it does not 
place any restrictions on which slices of a packet are 
created and destroyed. Restrictions, such as those 
implied by property inheritance, are defined and 
enforced at the PAL level. Inheritance is realized at the 
object manager level by a flexible invocation mechan- 
ism which allows type slices to delegate [Stein87] the 
implementation of operations to other type slices. A 
packet could in principle dynamically change its type 
structure or even consist of types which are uncon- 
nected by inheritance. A packet could also be distri- 
buted over a network, by having slices at different loca- 
tions. Datatype values on the other hand always have 
their whole representation kept together as one unit by 
the object manager. 
At the object manager level, a crude form of object 
orientation is provided by an invocation/return cycle 
operating with packet-slices and references to slices. 
Datatype values are simply datastructures at this level. 
Within the context of a compiled operation, an inter- 
preter is given control. The interpreter performs the 
actual execution of operations on both packet-slices and 
datatype values. When the operation terminates, con- 
trol is returned to the object manager. The passing of 
call and return parameters for operations of non- 
primitive types is also handled by the object manager. 
Since parameters are passed by value they will be 
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copied, but the copying is deferred until the partieter 
is actually accessed by the interpreter. 
All the primitive datatypes use a low level representa- 
tion which the object manager understands enough to 
preserve structure and content. The object manager 
takes care of transporting such values between secon- 
dary storage and the cache, and between the cache and 
the interpreter(s). It is possible to add new primitive 
datatypes, but this requires modification to the inter- 
preter layer and a static relinking of the system. This is 
expected to be relatively rare. It would only be done 
for datatypes which need to be optimized, or to add 
basic functionality missing from the current set of prim- 
itives. 

The normal way to add a new object type to the system 
is to define it in PAL, compile it and install it. The 
installation of a new packettype or datatype is 
effectively a form of dynamic linking which does not 
disrupt the normal operation of the system. 

4.1. References and Invocation 

Figure 5 illustrates a packet reference as it is 
represented in the object manager. 

Obrect Manager 

Fteference list. 
. 
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. 
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ID for operational type 

ID for instance 

Bit-vector 

Figure 5: A desciptor in the interpreter 
identifies a packet reference in the 
object manager. 

It contains two identifiers plus a bit-vector used by the 
object manager to maintain information about the refer- 
ence. The two identifiers in combination identify a 
packet-slice. Packet references never leave the object 
manager. The interpreter layer manipulates references 

indirectly by using descriptors. For each packet-slice 
the object manager maintains an associated list of refer- 
ences “owned” by that slice. A descriptor identifies a 
reference in the list. This ensures that the basic capabil- 
ity based protection mechanism ILevy of the object 
manager is not vioIated. When a descriptor is part of a 
datatype value which is assigned to a persistent attri- 
bute, the object manager will make the corresponding 
reference persistent. 
The object manager handles the invocation of opera- 
tions on packet-slices. In other words, when given a 
descriptor, and an operation to invoke, it finds the 
correct packet-slice of both the type (holding the code) 
and the instance (holding the instance variables) and 
starts the correct interpreter to execute the code of the 
operation. To find the type slice the object manager 
creates a new reference based on the reference identify- 
ing the instance. The operational type identifier of the 
instance reference becomes the instance identifier of the 
new reference. The operational type identifier of the 
new reference is an identifier for executabfes known to 
the object manager. 

4.1.1. Transaction Management 

The object manager employs a low level version 
management mechanism inspired by the work of Reed 
&ed78]. The details of this mechanism are explained 
in another paper [Bjam88], only an outline is given 
here. Packet slices are maintained in time-stamped ver- 
sions by the object manager. A packet operation which 
updates a slice will generate a new version of that slice. 
Versions are tentative until the operation which gen- 
erates them has committed. Old versions of a slice are 
kept by the object manager for at least the time needed 
to complete the trmsaction generating a new version. 
Versions may also be kept for longer if applications 
need them. The unit of synchronization and system ver- 
sion management is the packet slice. The unit of action 
on a packet-slice is the packet operation. A nested tran- 
saction scheme is used where each packet operation is 
regarded as a (sub)transaction. A top (independent) 
transaction is indicated by using ‘#’ as invoke operator 
on a packet operation. When an operation is invoked 
the object manager prepares for access to three different 
slice versions in the cache. 
. The operational type version slice (always 

located, read-only). 
b The instance read version slice (may be omitted, 

read-only). 
b The insfunce write version slice (may be omit- 

ted, both read and write allowed). 
The code for all specific (non-inherited) operations of 
one type resides in a slice belonging to the type. The 
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object manager must locate the correct version of this 
Slice if there are several versions due to the type having 

been updated. The read version is the “latest” version 
of the instance slice valid before the current invocation. 
The write version is the new slice version to be gen- 
erated by the current invocation. 

Since the read version and the write version may be 
omitted there are four kinds of invocations: 
. Read-only. The operation accesses attributes, but 

does not assign to them or apply modifying data- 
type operations to their values. The write version 
is omitted, 

b Modifying. The operation both reads and yyrites 
attributes and makes some reads before writes. 
Both the read and write version is needed. 

. Independent. The operation only writes (assigns) 
to attributes, or assigns to attributes before read- 
ing them. The read version is omitted. 

. No-instance. The operation does not access attri- 
butes. Both the read and write version is omitted. 

This classification of operations is used by the object 
manager to reduce overhead and to increase potential 
concurrency. The classification is done automatically 
by the PAL compiler. For example, the no-instance 
class does not need any synchronization. It is similar 
to what Hewitt has called an unserialized actor 
lIIewit84], except that here it is not the packet (or 
actor) as a whole being serializable or not, but the 
operation (or part of the behavior). Such an operation 
does not access the instance as such. The operations of 
datatypes defined in PAL are much like no-instance 
packet operations from the object managers point of 
view. The object manager will only need to fetch the 
operational type version slice since for a datatype value 
there is no instance slice. The value instead resides on 
the local stack 

4.2. Decentralization 

Although functions for handling more than one node 
have not been fully implemented ‘yet in AVANCE we 
think it important to describe how the AVANCE archi- 
tecture is appropriate for decentralization. 

4.2.1. Object Identity 

Object identity has been recognized as important 
[Khosh86] particularly in a system such as AVANCE 
with both persistent objects and decentralization. The 
distinction between packets and datatype values 
significantly reduces the number of identifiers needed 
For AVANCE we consider the advantage of a common 
identification scheme important enough to sacrifice 
some of the symmetry of the logical network (see 

figure 2). Each node has a sequence of unused 
identifiers. When a new packet is created at a node, an 
identifier is taken from the sequence and associated 
with the new packet. When a node is about to run out 
of identifiers, it communicates with one specific other 
node, which has been designated as the identijier gen- 
erutor node, (IGN) and replenishes the sequence. This 
introduces a slight centralization in the system, since all 
nodes will be dependent on the IGN. The event of run- 
ning out of identifiers can however be made as infre- 
quent as desired by making the replenishing sequence 
sufficiently large. The margin allowed before ordering 
new identifiers from the IGN may also be made large 
to give ample time for the order to be effected. Further- 
more, if the IGN intends to close or otherwise become 
unsuitable as the IGN, it may dynamically request 
another node to take over the IGN function. This is 
done by moving a special IGN-packet to the new IGN. 
If the IGN node does close, or become unavailable to 
some nodes, then these will be forced to close when 
they run out of identifiers. 
There are several other details and enhancements to this 
scheme not covered here,** the main point here being 
that identifier generation is not a big problem. 

4.2.2. Low Level Representation 

For the representation of values of the primitive data- 
types we have designed a special language for defining 
composite data structures. We have implemented func- 
tions in the object manager, that given such a data 
structure description, can generate a primary storage 
structure, and a corresponding serialized structure for 
use on secondary storage and for node-local communi- 
cation. The normal AVANCE user/programmer does 
not have to be concerned with these low level data 
structures. They are only visible to the implementor of 
a primitive datatype. User defined packet/datatypes are 
defined as abstract datatypes and use the primitive data- 
types (as abstract datatypes) for defining their internal 
representation. 

4.2.3. Communication Protocol 

Because the invocation of packet operations has a 
remote procedure call semantics, it allows for any of a 
number of lower level communication protocols, for 
example the Sun RPC/XDR facility [Sun861 is one pos- 
sibility. The representation form described in the previ- 
ous section is not machine independent. For data to be 
communicated between nodes we will not use our Own 

18 One could have a hierarchy of IGN’s to reduce the pb- 
lem of one IGN becoming a bottleneck. This could improve 
both perfomanee and reliability. 
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serialization routines, but instead serialize to a represen- 
tation which is machine independent, such as XDR. On 
top of this we need our own protocol for movement of 
packet(slice)s between nodes, remote packet (slice) 
operation invocation, and transaction management with 
two phase commit [Gray78]. The transaction manage- 
ment protocol will not be further discussed. 

Movement of packets 

A packet slice can only reside at one node at a time, 
but replicas of the versions generated at the node may 
be given to other nodes. The meaning of a slice resid- 
ing at a node is that the node has the right to update 
the slice, i.e., generate new versions of the slice localy 
by executing modifying or independent operations 
localy. Other nodes may only acquire replicas of 
already existing slice versions. To move a packet slice 
from one node to another, first the latest valid slice is 
replicated on the destination node, then the update right 
is moved. This has to be done as an atomic operation 
and uses the same transaction protocol as used with 
normal packet operations. 

Remote invocation 

The invocation of a packet operation will result in the 
object manager trying to locate the correct slice of both 
the type and the instance involved from the information 
in the reference. If the correct type slice is not found 
locally then the invocation will fail. If the type slice is 
found, then the object manager attempts to look up the 
slice of the instance belonging to that type. If this fails 
then the object manager will “guess” on which node the 
instance slice is located and pass the original invocation 
on to that node. If the other node succeeds it simply 
returns the result of the invocation. If it fails for the 
same reason that the original node failed, the other 
node will make a “guess” on the location of the 
instance. However, instead of directly passing the 
invocation on to its guess the other node returns the 
guess to the original node which makes a new guess, 
perhaps based on the guess returned by the previous try 
etc. In the worst case the original node will attempt to 
communicate with every other node it knows of. Once 
the location of the instance has been found the object 
manager will remember this location as a tlrst guess for 
the next invocation on the same instance slice. The 
idea of guessing or using a “soft” form of addressing 
for locating objects at other nodes has been borrowed 
from the Xerox Clearinghouse [Oppen83]. 
An invocation of an operation which is read-only can 
sometimes be executed locally even if the instance slice 
does not reside at the node. This will be possible if the 
node has old versions (or replicas) of the slice and the 
reference used in the invocation is bound to a time 

where an old version is known to be valid. 

4.2.4. Distributing a new type 

The predefined types (primitive datatypes and system 
defined packettypes) form a substrate common to all 
nodes. When a new type is defined in the system it will 
bc represented as a packet and thus have its own global 
identilier. It is not enough to just compile a type to 
make it available for use as a type. The compiled type 
must be installed. This is done on a per-node basis, 
usually starting with the node on which the type was 
created. The installation of a type at a node creates an 
executable operational type slice of the type at the 
node. Thus, a type maintains its identity over all nodes 
where it is installed. The installation of a type involves 
issues of type version management discussed in 
[BjUm881. 

5. Summary 

AVANCE is an OMS integrating programming and 
database management by providing a single level store. 
The object space is partitioned into packets and datu- 
type values. This simplifies the implementation of the 
system and also gives the PAL programmer control 
over which objects should be persistent or shared. The 
AVANCE architecture provides three levels of abstrac- 
tion: the low-level object manager, the pseudo-code 
interpreter, and the PAL programming language. The 
architecture is also geared towards decentralization, by 
the remote procedure call semantics of packet opera- 
tions, by the very large identifier space, and by the use 
of immutable versions of slices of packets generated by 
atomic actions. 
The object manager provides a low level object 
oriented and capability based operating system, includ- 
ing an invocation mechanism that synchronizes 
processes by making operations on packet-slices atomic. 
The invocation of an operation on a packet (slice) is the 
point of indirection where dynamic binding may be 
applied to procedure implementation, instance version, 
type version and instance location. The possibility of 
adding new interpreters and compilers allows for a mul- 
tiparadigm language environment. Although the basic 
paradigm provided by the object manager is object 
oriented, the language used for writing the implementa- 
tion of a type’s operations could be any language for 
which a compiler and/or interpreter is provided. 
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