
AVANCE:
An Object Management System

Anders Bjdmerstedt
Stejii Britts

SYSLAB t
Department of Computer and Systems Sciences

University of StockhoIm
S-106 91 Stockholm

SWEDW

Abstract
AVANCE is an integrated application development
and run-time system. It provides-facilities for pr&ram-
ming with shared and persistent objects, transactions
and processes. The architecture is designed with decen-
tralization in mind by having a large object identifier
space and a remote procedure call interface to objects.
Emphasis in this paper is on the programming language
PAL and its relation with the underlying virtual
machine.

I, Introduction
Over the last years there has been an increasing interest
in object oriented programming languages (OOPLs) and
object oriented systems. OOPLs range f?om languages
which simply encourage or at least permit an object
oriented programming style [Birtw73, Cox86, Strou86],
to languages which permeate the object oriented “para-
digm” in every part of the language [Goldb831.

t This work is supported by the National Swedish Board for
Technical Development (STU).

1 AVANCE was previously named OPAL. If is uadet
development at the University of !3ockhobn and SISU (the
Swedish Institute for Systems Development).

Permission to copy without fee all or part of this material is granted provided
that the copm are not made or distributed for direct commercial advantage,
the ACM copyright nctice and the tide of the publication and its date appear,
and notice is &en that copying is by permission of the Association for
Computing Machinery. To copy otherwise. or to republish, requires a fee and/
or specilic permission.

Q 1988 ACM O-8979 l-284-5/88/0009/0206 $1.50

Recently attempts have aIso been made to integrate
such languages with facilities for making objects per-
sistent and shared, that is, to provide some kind of data
base for storing objects [IEEE85 IEEE86]. This has
been accomplished either by making extensions to
existing languages [Maier86J, by extending the data
model of an existing DBMS [Stone86J, or by designing
entirely new languages and systems miers87]. Idealy,
the language and the data model should be seamlessly
integrated. If the language and the data model can
become one and the same then the programmer is
relieved of problems such as converting between
representations suitable for the database and the appli-
cation.*
The interest in object-orientation as a basis for design-
ing and implementing information systems is based on
the recognition of advantages, both on the level of
modeling and design, and on the level of implementa-
tion with the suppon possible for software construction.
Object-oriented architectures can model reality closely
by allowing an extensible data model. For the purposes
of software construction and programming support,
object-oriented architectures provide modularity, flexi-
bility, support for change and reuse of software, and for
generic programming.
Object-oriented architectures are also promising for
constructing decentralized and loosely coupled (or
open) systems [Gray86, Hewit84]. Various forms of
late binding may be incorporated at strategic points in
the system to allow for flexibility and openness with
respect to time, structure, location etc. without
compromising local consistency.

2 This is cometimes called providing a single level slore.

206 OOPSLA ‘88 Proceedings Stipfember2WO,l988

One can generalize the concept of an object-oriented
database to what in this paper will be called an Object
Muiragement System (OMS). An OMS is analogous to
an operating system in that it provides a complete com-
putational platform for both development and execution
of applications. An OMS provides a more homogene-
ous “world view” than an object-oriented database. Not
only are both objecttypes and instances regarded as
objects, but compilers, processes, devices, every-
thing available is regarded as an object. No distinction
is made between a database acting as a repository and
external applications for providing functions to users.
In an OMS it should ordinarily not be necessary to go
outside the system for some particular functionality,
like application design. As an example, standard
Smalltalk- could be called an OMS except that mul-
tiprogramming (true parallelism), sharing and atomic
operations (transactions) are not available. Gemstone3
does provide database facilities in a Smalltalk environ-
ment, but has two object models (the Smalltalk and
GemStone models) which are not completely unified
P~y871.

At this point we want to make explicit two points of
possible misunderstanding regarding the concept of
OMS as we use it here. The first concerns the reason
why we are advocating the OMS architecture. It has
been pointed out that building a database on top of a
general operating system creates problems of efficiency
lStone81, Gray781. Although this may be a reason for
integrating operating systems with databases, efficiency
is not our primary concern here. Our primary concerns
are homogeneity, extensibility and reliability.

The second point concerns homogeneity. Although the
goal of an OMS should be to provide all the functional-
ity users need within the system, it does not have to be
closed. The homogeneity provided by an OMS is some-
thing, to be seen as exploitable, not as something con-
stricting. An OMS should then provide “windows” to
the outside world, which may be used for reasons of
efficiency and practicality. If such “windows” to other
worlds are to be provided then these should also be
provided in terms of objects. Object-oriented databases
do have the advantage that they will probably be more
efficient when integrated with existing systems. This is
because object-oriented databases are often &signed as
servers [Homi87, Purdy87]. while an OMS is primarily
designed to serve itself. Because an OMS is more than
a database, it should be possible, given the appropriate
primitive types, to design the appropriate objecttypes
making the OMS behave as a server. However, since

3 Gedhne is a registered tmdematk of Sewio Logic
Development Corporation.

the OMS is not optimized for serving external applica-
tions it will probably not be able to compete as a gen-
eral server with object-oriented databases, or DBMS
tool-boxes such as EXODUS [CareyW.

Homogeneity encourages the reuse of software and the
incremental development of applications. It also makes
it simpler to keep the entire system consistent. How-
ever, it may also create problems. One problem that an
OMS must face, that object-oriented databases do not
have, is the interference between transaction manage-
ment and user interface management. If there is a strict
borderline between the database and applications, then
transaction management naturally is the responsibility
of the former, while user interface management is the
responsibility of the latter. In an OMS no such strict
borderline exists and as a consequence the relationship
of transaction- and user interface management needs to
be reexamined.

AVANCE [Ahlse84, AhlseW, is a research prototype
OMS. It is a fairly large and complex system. This
paper focuses on the language PAL, and the parts of
AVANCE of concern to the programmer. AVANCE
supports. among other things, sharing of persistent
objects, nested transactions, object version management,
decentralization of both data and control, a strongly
typed compiled programming language, and a weakly
typed interpreted command language. Aspects of
AVANCB which will not be discussed ln this paper are
the user interface, authorization, exception handling,
views, and triggers.

Decentralization is an important aspect of AVANCE
and this has had effects on the system design. Semantic
issues of type equivalence, type changes, and naming
have been addressed. Although decentralization has not
been fully implemented yet in AVANCE, much effort
has been made in the design to make this step as pain-
less as possible. AVANCE is a running system. The
implementation effort so far has focused on architec-
tural issues and not on the user interface, the type
library, or development tools.

Of the other systems we have looked at the one perhaps
most similar to AVANCE is VBASE [Andre87].
VBASE emphasizes an integrated language and data-
base environment, with database facilities more power-
ful than what is currently available in AVANCE. For
example, AVANCE does not have system support for
bidirectional relationships (one-to-one, one-to-many
and many-to-many). On the other hand AVANCE will
support decentralization which seems to he missing
from the VBASE architecture. In this respect AVANCB
is more like the Emerald system [Black86].

The paper is structured as follows. Fit an overview
of AVANCE, then the PAL programming language, and

Seplemher 2!5-X41988 OOPSLA ‘88 Proceedings 207

finally, the AVANCE virtual machine.

2. Overview of AVANCE
The architecture is designed to provide three levels of
abstraction to implementors. Figure 1 illustrates the
static system software components of AVANCE.

PAL PAL
command compiler
interpre-
ter

ltNChlllOCOd0
1

Interpretor

Packet-slice manager
\

The
AVANCE

Low level virtual
Cache manager Object machine.

manager.

Secondary storage

n-ww
.1

Figure 1: The static system
soltware of AVANCE.

The low level object manager provides function
identifying and manipulating a data abstraction (
the packet-slice. This concept will be explained fi
in section 4. It provides an interface suitable for 1
ing interpreters.

for
illed
-iher
lild-

Tbe second level of abstraction is the virtual machine
interface provided by the pseudo-machine code (p-code)
interpreter. It has similarities with the Smalltalk- vir-
tual machine [Goldb83]. ‘The interface provided by the
p-code interpreter is essentially a stack machine which
understands a set of primitive datatypes and an instruc-
tion repertoire to operate on these, The interfaces pro-
vided by the object manager and the p-code interpreter
are not intended for human interaction.

The third level of abstraction is the high level language
PAL. A compiler translates PAL, into the pseudo.
machine code of the virtual machine. It is at this level
that the full power and homogeneity of an OMS is
available. Most users / programmers would only use
this level of abstraction.
The low level object manager is relatively independent
of the p-code interpreter, and the p-code interpreter
relatively independent of the PAL compiler. Thus it is
possible to have several alternative interpreters on top
of the object manager, and several different compilers
on top of an interpreter. This makes it possible to have
several different programming languages and virtual
machines, or different versions of them simultaneously
running in the system. Presently, besides the pcode
interpreter and PAL compiler already mentioned, there
is only a simple command language interpreter which
directly executes a subset of PAL.

2.1. Object Granularity

The world of objects in PAL is partitioned into two dis-
joint sets: packets and dututype values. Both packets
and datatype values are instances of abstract datatypes.
By this is meant that they have an internal hid&n
representation and the only way to operate on a packet
or a &tatype value is by using an operation de&red for
thetype*

2.1.1, Packets
Packets are associated with persistence, independent
existence, synchronized sharing, resiliency [Svobo84],
atomicity [Lisko83], and system version control. Pack-
ets are identified by non-reusable surrogates allocated
when the packet is created. ‘ihe identifier space is very
large in order to allow global identification in a decen-
tralized / dimihuted system. Packet identifiers are only
used as components of packet references, and are not
dim&y available for manipulation outside the object
manager. Packets may be aggregated by the use of
packet references. into any directed graph structure.
Packets maybe shared between AVANCE processes.
A Packet is roughly comparable to a monitor
[Hoare74], in that it synchronizes processes which
invoke operations on it. A packet operation invocation
is a remote procedure call. In other words, arguments
and return values are passed by value, the invoker is
blocked until the invoked operation returns control, and
the details of communication protocol and emr detee-
tion are hidden from the programmer. Packets resemble
Guardians in Argus Lisko831 in that they are persistent
objects with remote procedure call handlers. They
differ from Guardians in that they are generally not
active by themselves (they do not have their own thread
of control).

2.1.2. Datatype Values
Datatype values do not have independent existence. For
a datatype value to be persistent it has to be assigned to
an instance variable of a packet. Datatype values never
overlap, that is, every instance variable contains a
“private” value, and assignunent of values between vari-
ables will entail a copying of values. This makes gar-
bage collection relatively simple4. but reduces the
efficiency of the system. The only way for two or more
objects to share an object is by using references to a
common packet,

4 &&age cc&ctiott of datatype values is handled automrti-
ally by the vittull machine. Glttwgc wllcctioll of plckG~ ha1
not been imphncntcd yet. but the intentiot~ is to do it by pg-
ing unreachable packets on a per-node basis (see sectiat 2.2).

ax OOPSLA ‘88 Proceedings sqJkmbef2580.1988

Datatype values have significantly less overhead than
packets. The operations of datatypes can be imple-
mented rather efficiently, compared with the operations
of packettypes, since no overhead for persistency, syn-
chronization, version control etc. is needed. Further-
more, datatype values are not assigned system unique
identifiers (like packets), since they are not persistent,
independently existing objects. This also reduces space
and time overhead. For example, the object space is
not “polluted” with huge amounts of small or temporary
objects. Unless a datatype value has been assigned to
an instance variable of a packet or given as a return
parameter, it will be garbage collected when the packet
operation which created it returns. Depending on these
differences in properties, the designer can decide
whether to implement a type as a packettype or data-
type.
The PAL programmer defines the internal representa-
tion of a type (both packet- and datatypes) in terms of
datatypes, i.e., by declaring instance variables on data-
types. Packets can not be directly incorporated in the
internal representation of a type, instead the reference
datatype is used The packet reference datatype is the
“bridge” between the &tatype type system and the
packettype type system. A programmer may create a
datatype which in its representation has packet refer-
ences, thus the distinction between packettypes and
datatypes as the former being persistent etc. and the
latter not must be taken in a shallow se&.
The p-code interpreter implements a number of primi-
tive datatypes. Most of these directly correspond to
datatypes at the PAL level and are available to the PAL
programmer, while some of them are only used by the
compiler for its own purposes.

2.2. The AVANCE Logical Network
Tbe large scale architecture of an AVANCE system
consists of a logical network of nodes6 (see figure 2).
Each node provides a centralized information proccss-
ing environment, suitable for an “organizational unit”
requiring authority over processing and data. Protection
of data is handled within a node. Each node resides on
a physical machine host. Each node may become una-
vailable for communication with other nodes in the sys-
tem. This may be because the administrator of the node
has decided to close it, or due to a crash of the node or
host, in which case the node closes without warning.

’ The word shallmv should be taken iu the sense of shal-
1uwCupy or decpCupy in the Object instance pmtod of
smalltalk-80.

6 ‘Ike implemmration of AVANCE has currently only prw
gresscd far enough to m single nodes in isolation.

Host 2.

ci!Q

I Host 3. cQHd4-

cd
Nale 6.

Noda 7.

Figure 2: The coarse structure
of an AVANCE system.

Nodes are thus relatively autonomous and what unites a
set of AVANCE nodes into a system is the adoption of:
0 a common identification scheme for packets,
l a common representation form for all packets and

datatype values,
l a communications protocol between nodes, and
l a common set of packettypes and datatypes.
These four points will be detailed in section 4.2. We
require that all nodes run the same version of object
manager software.7 The reason for this is that the
object manager maintains a lowest level of consistency
in the system. Identification scheme, representation
form, and communication protocol are all defined at
this level. In practice, nodes will also mn the same
interpreter(s). If nodes arc to have any meaningful com-
munication they will at least have to agree on a set of
common primitive datatypes. But, as mentioned earlier,
they could run different versions of the same inter-
preter, or different interpreters with some primitive
datatypes in common.

3. The PAL Programming Language
PAL is a high-level, block structured language pri-
marily inspired by Simula [Birhv733, Smalltalk-
[Goldb83], and CLU lJ,iskoSl]. It contains facilities
for both defining and manipulating objects. In addition
to ordinary programming language constructs, func-

’ AVANCE is implemented on Sun UNIX using the C pro-
gramming language. For the forscable future we rcquim all hosta
to be Unix machines.

Septdr 25-30,1988 OQPSLA ‘88 Proceedings

uonality for persistency, version management, con-
currency and decentralization are supported. Facilities
to support exception handling and triggers are currently
under development [AhlseS7].
All facilities are completely integrated within PAL.
Hence, there is no difference between, on the one hand
defining and manipulating “program objects” and on the
other hand defining and manipulating “database
objects”. PAL+ supports typing, property inheritance,
data abstraction, encapsulation, instantiation and both
dynamic and static binding within a homogeneous
environment. Not only “data”, but also “meta-data”,
are represented as objects.

In spite of its strength, PAL is a fairly small language.
This is thanks to the extensible data model and the uni-
formity possible with object-orientation. A limited
number of syntactical constructs and pre-defined object-
types cover most basic needs. What is not covered can
usually be added by &fining new objecttypes. Logi-
cally, there is no difference between pre-defined and
user-defined objecttypes.

3.1. Typing and Instantiation
In order to illustrate the capabilities of PAL as a design
and implementation tool a simple electronic mail appli-
cation will be used as an example.

Figure 3: Conceptual model of e-mail application

A user gets access to the mail system by executing an
operation main on an instance of the MailProgram.g In
order to be able to receive letters a user must be

* MailProgram is actually I subtype of Application, which
is a systemdefined packettype (see below). It is debatable
whether UaiJProgrum and Appkahon really are conceptual en-
tity types. They have been included here only for reasons of
completeness.

registered in MailUsers. The mail user register is used
by the application for looking up the recipients
mailbox@) when sending letters. A Mailbox is associ-
ated with each registered user. All unread letters are
stored in this. Letter is the type of object communi-
cated among users. Letter is a subtype to Document,
which is assumed to be a generic “business document”,
generalizing properties of letters, memos, reports, etc.
The letter contents type, finally, is called Message.

As packettypes and datatypes have somewhat different
semantics one has to decide whether to define each
entity type in the conceptual model as either a packet-
type or as a datatype. In the e-mail application Docu-
ment, Letter, Mailprogram, Mailbox and MailUsers
are defined as packettypes. The primary reasons for
this is that we want objects of these types to have an
independent existence or to be shared among users.
Message (the type of the letter contents) is defined as a
datatype. This is possible since a message is always
associated with a letter (which is a packettype) in a
l:l-fashion. If we wanted the ability to send the same
Message object in more than one Letter, then we
would also have made Message a packettype.
In order to have a running e-mail application the
objecttypes above must be programmed, compiled,
installed and instantiated. In principle, any number of
instances may be created of a type. In this example,
however, there must be exactly one instance of
MailUsers since this object will act as a central regis-
ter. In generaI, some types need not be instantiated. A
type without any instance variables does not need any
instance to execute. A “program” in the traditional
sense (without private persistent data) would be imple
mented as an operation which does not access any
instance variables. In this case it would not make any
difference whether the type was implemented as a
packettype or as a datatype. There may also be types
which are not intended to be instantiated as the most
specialized type of an instance. These are called
abstract types and are used only to generalize proper-
ties of subtypes. As in Simula and C++ an operation
may be declared virtual in order to defer the imple-
mentation to subtypes. Document is an example of an
abstract type.

32. Property Inheritance
Both datatypes and packettypes are organized in pro
perty inheritance “trees”. As multiple inheritance is
supported the inheritance “tree” is rather a directed acy
clic graph. In figure 4a, parts of the inheritance graph
for primitive datatypes (strongly inspired by Smalltalk)
is shown. Indentation means property inheritance.

210 OOPStA ‘88 Proceedings September 25-30,1988

Primitive Datatypes
l Value
. . Boolean
l l Magnitude
l l l Date
l a*Number
l l l l Integer
. . ..Real
l l Compiler
l . Parameterized
l l l Collection
l l l l Sequence
l l l . Bag
l l l Reference
l **PTOCC%

(a)

System-Defined Packettypes
l Packet
l l Node
l l DirectoryEntry
l l l Directory
l l l Application
l l l l TypeDef
l l l l l DatatypeDef
l l l l l PackettypeDef

Figure 4: Some Pre-Defined Objecttypes

-1

1
-I

Since datatypes and packettypes have different seman-
tics, a datatype cannot be a subtype of a packettype and
vice versa. Therefore, a separate inheritance graph is
constructed for packettypes. In figure 4b, some
system-defined packettypes are shown.

All datatypes and packettypes must, directly or
indirectly, be a subtype to Value or Pucker respec-
tively.g Hence, user defined objecttypes may not form
separate inheritance graphs. If a new objecttype is not

explicitly declared to be a subtype of an existing type,
it is assumed to be a subtype of one of the two root-
level objecttypes.
Some datatypes are type parameterized (unlike
Smalltalk), e.g., Collection. Sequence, Army, Set, and
Reference. Parameterization can be seen as a weak
form of inheritance. A parameter&d datatype is usu-
ally a structured type where the parameter specifies the
type of its’ component(s), e.g., List{lnfeger),
List(Char), and Array(Lisr(Set(hteger))). The Refer-
ence datatype (Ref for short) is a special case in that it
is parameter&d with a packettype, while most other
parameterized types are parameter&d with a datatype.
An instance of Ref is a handle to a packet of the type
the parameter specifies, e.g.. Ref(Letter), and
ReflMailbox).

3.3. Data Abstraction and Encapsulation
Following the data abstraction philosophy, objecttypes
are defined in terms of a specification and an imple-
mentation. These parts are defined separately and may
also be compiled separately. An application may be

9 This is a constraint enforced by the PAL compiler and not

inherent to the object manager.

September 25-!30,1988

defined purely by specifications and these compkd
before the corresponding implementations exist. After
this several programmers may work independently on
the implementations. The PAL compiler ensures that
specifications are type compatible with each other and
that implementations conform to their specification.

33.1. Specifications

An objecttype specification consists of three optional
parts: a context part, a public part, and a private part.
In the cOntext part supertypes plus packettypes and
datatypes that this particular objecttype needs to have’
access to are stated. Note that primitive datatypes need
not be stated. The public part contains declarations of
operations that are available to all other objecttypes.
which use this type. The private part declares opera-
tions that are available only to subtypes of this object-
type and to itself for operating on itself and other
instances of the same type. Operations may return mul-
tiple results (as in CLU).
A specification thus defines two interfaces. The inter-
face provided by the public operations for external use,
and the interface provided by both the public and the
private operations for use by subtypes and in its own
implementation. The private operations makes it possi-
ble to provide tools to implementors of subtypes,
without making these tools visible externally. The
private operations also serve another purpose. It is
sometimes necessary for a type to operate on more than
one instance of itself in the implementation of an
operation, e.g., anInteger.add(anotherInteger). In CLU
this is handled by an explicit conversion of abstract
objects to their representation. In PAL the problem is
solved by defining a private operation returning the
internal representation. If we only had the public inter-
face then the operation would be accessible to any
other objecttype, which would violate encapsulation.1o
The packettype specifications for Document and Letter
in the e-mail example look like this:

lo Because the private operations serve two different pur-
poses, as an interface towards subtypes, and as an interface to-
wards other instances of the same type, we long deliberated over
whether to have three interfaces in the specification. We decid-
ed against this because we thought the price in terms of a more
canplicated language was not wottb the added security. Bolh
purposes of the private operatiars also in a sense serve imple-
mentors of “one” type

OOPSIA ‘88 Proceedings 211

PACKE’ITYPE Document;
SPECIFICATION

P Generic “Business Docummt” +/
PUBLIC

OPERATION Satd(mailboxcs : Liit(Ref(Mailbox)); To:List(Tcxt));
VARIABLE P Send letter to listed recipimts l /
mbox : Ref(Mailbox);

BEGIN
OPERATION Edit(author : Text); VIRTIJAL; @DateSent:=DatcTcday();
OPERATION toListOfhxt0 : List(Text); VIRTUAL; @contents.putHeade&etAuthorQ To, @Date&&
OPERATION getAuthor() : Texs FORBACH mbox IN mailboxes DO

PRIVATE mboxSDeliverMail(SJ3I)LF);
OPERATION putAuthor(name : Text);
OPERATION putLastUpdate0;

END Documcn~

ENDsend;
.

PACKB’ITYPE Letteq
SPECIFICATION

P The type of objeu cunmunicati among users l /
CONTEXT

SUPERTYPE Document;
PACKETl’YPE Mailbox
DATATYPE Message;

PUBLIC
OPERATION Send(maiIboxcr : List(Ref(Mailbox)); To:List(Text)):
OPERATION getDat&nt() : Date:

END Leacr.

The context part of Leffer states that it is a subtype to
Document and that it must have access to the Mailbox
packettype and the Message datatype. Two public
operations are declared - Send and getDateSent. No
private operations are declared. Letter inherits the con-
text and al1 public and private operations of Document
and Pucker. Pucker is an implicit supertype of Docu-
ment. PAL-defined datatypes are almost identical to
packettypes syntactically.

All public and private operations declared in the
specification must be defined in the implementation.
The implementation of an operation simply adds to the
operation heading optional local variables and a com-
pound statement. In addition, operations local to the
implementation may be defined. Such operations are
only available internally in the implementation for
operating on SELF. SELF is a pseudo-variable desig-
nating the object instance that executes the code. In the
example above SELF would implicitly be of type
RefL.etter).

3.3.2. Implementations
An objecttype implementation consists of two parts, a
representation and an operation implementation. The
representation defines instance variables used to hold
the object state. The operation implementation defines
operations. Below, parts of the implementation of
Letter is shown:

PACKEITYPB Ltttcr;
Ih4PLBMBNTATION

ATTRIBUTE
contents : Message;
DateSent : Date;

OPERATION Edit(author : Text); P Bdii letter contents */
BEGIN /* virtual op implunul!atim */

@conlents.put.sody(Stio.Edit(@~~~.g~B~O));
putLastUpdate0;
putAutbor(author);

END Edit;

The representation of an object is defined in terms of
instance vatiables. Instance variables in packettypes
are called attributes. Letter, above, has two attributes,
contents and DateSent. In statements ‘@ ’ must precede
an attribute. This is to remind programmers of their
semantics (persistence), and that there is generally a
difference in access cost between attributes and other
variables. Instance variables of an object are not
directly accessible from other objects. Hence, in order
to let users modify the contents of a letter an Edit
operation has been defined. Edit is declared in the
specification of Document as a virtual operation. At
run-time the object manager will dynamically bind an
invocation on a virtual operation to the implementation
provided by the most specialized type that the packet
(or value) is an instance of. Declaring an operation vir-
tual in a specification implies two things for implemen-
tors of subtypes. First, the operation may not be over-
ridden in the specification of a subtype. Second, a sub-
type must have its own implementation for the opera-
tion (and it must conform to the inherited specification).
Virtual is used when the representation of an object-
type, which strongly affects the implementation of an
operation, is not known at the level of generalization
where the operation is specified. For example, the
representation of Letter (i.e.. contents : Message) is not
known when the operations on Document are defined.
Note that strong type checking is retained for both
static and dynamic binding.tl

I1 It is a sanetimes held misconception that strong typing
and dynamic binding am in catfliu. Stmng typing may be used

212 OOPSLA ‘88 Proceedings sGfltember25-30,1908

3.4. Object Management
In PAL, object instances are manipulated through
expressions and statements. Below is an incomplete
syntax for expressions:

Expression =
[Object InvokeOperator] OperationCall
(InvokeOperator OperationCall).

Normally, an operation call (operation name and actual
parameters) is preceded by an object (variable, literal,
or the result of an expression) and an invoke operator
(dot or dollar), e.g.:

mbox$DeliverMail(SELF);
The statement above means: invoke the DeliverMail
operation on the packet referenced by the variable
mbox and pass the value of SELF as parameter. The
‘$’ operator is used for packettype operations and ‘.’
for datatype operations. This reminds programmers
about the difference in semantics and cost between
operations on packets and datatype values.12 If an
operation is not preceded by an object, the object is
assumed to be SELF. Operations can also be chained
by directly invoking an operation on the result from
another invocation. Chained operations are evaluated
left-to-right.

Variables (and attributes, which are simply a special
kind of variable) are distinct from datatype values in
PAL. A variable should be seen as a container for a
datatype value. When a datatype value is assigned to a
variable, the previous datatype value will be replaced
and garbage collected. Hence, assignment is not an
operation on a datatype value, but on a variable. when
an operation does not access any instance variables it is
possible to invoke the operation directly on the type
object, e.g.:

@DateSent := Date.Today();
Dare is a primitive datatype and the operation ~oduy is
an operation independent of any particular instance.
PAL does not have updatable class variables in the
sense of Smalltalk-80,13 i.e., variables accessible to all
instances of a class. Only class constants are allowed.
Class variables do not agree well with decentralization.

In order to instantiate a packettype the Create opera-
tion is used.

for at least two purposes: safety and efficiency. It is possible to
use strong typing for the purpose of safety alone and still have
dynamic biding.

l2 Actually there is an additional reason for this. In order to
be able to opemte on a value of the Ref datatype and not on the
packet it mfenznces there must be a way to syntactically distin-
guish the two cases.

l3 There are no global or pool variables either.

September 2530,1988

MyLetter := Letter!!CreateO;

The Create operation does not access any instance
variables and so may be invoked directly on the type. It
creates a new instance of Letter, and calls an operation
Initialize on the newly created instance, which initial-
izes its attributes. Finally, the reference to the instance
is returned. The reference must be saved, in a variable
or attribute, or else the packet will become unreachable.
Datatype values are created and initialized automati-
cally by declaring a variable on the datatype.
Traditional programming languages provide an algebra
(operators + operands) for manipulating data. In such
languages the interpretation of an operator is fixed
within a global and static type system. In PAL, and
other OOPLs, the interpretation of an operation depends
on the object on which it is invoked For reasons of
convenience PAL provides an “algebra” as an alternate
syntax. However, the semantics is still object-oriented
as the “algebra” is transformed into object-oriented
form by the compiler. Hence, expressions such as 5+6
are transformed to 5.add(6).14
In addition to assignment statements and expressions
there are also control structure statements, e.g., if,
while, repeat, foreach, and return.

Compiled PAL is strongly typed.. Sometimes, however,
the type check must be deferred until run-time. For
example, if the variable &c is declared to be of type
Ref(Docwnent), then

doc!§getDateSent()

would not be allowed since getDuteSent() is only
defined for letters. By requalifying dot to be of type
Letter the expression becomes type correct:

doc:Ref(Letter)$getDateSent()
But, whether or not dot actually references a letter will
only be known at run-time. The compiler will generate
the code needed to perform a run-time type check.
The example above is called downward type
qualification (downward in the inheritance graph).
Upward type qualification is always possible. No run-
time type checking is needed in this case.

3.5. Comments on Data Abstraction
In PAL property inheritance means strict inheritance of
specification and default inheritance of implementation
(as in Trellis/Owl [§chafl36]). It is possible to override
operations declared in a supertype. For virtual opera-
tions the implementation in the supertype must be over-

l4 Although the set of operators is currently fixed and hard-
wired into the compiler, the operands do not have to be of a
primitive type.

OOPSIA ‘88 Proceedings 213

ridden in all subtypes. When overriding the implemen-
tation of virtual operations, the types of formal panme-
ten may be generalized and formal results may be spe-
cialized. For standard operations overriding is only
possible by overriding both the specification and the
implementation. However, this overriding will not be
effective on variables or references declared to the
supertype, because of static binding.

In PAL it is possible to control the binding caused by
virtual by using the invoke operator ‘$$’ instead of ‘$‘.
This operator will cause static binding to be used, even
if the operation is declared virtual. This is normally
used only in the implementation of a virtual operation
where access to the supertype’s implementation is
needed. For example the implementation of the opera-
tion toList0jText in Letter could invoke the implemen-
tation of this operation in Document by the code:

lst:List(Text);

1st := SELF:Ref(Document)$$toListOffext();
The ‘$$’ operator is a more general mechanism than
the use of the pseudo-variable ‘super’ in Smalltalk-80,
since it may be. used anywhere. It is less general than
the mechanism in VBASE [Andre871 for method com-
bination. However, the use of the ‘$$’ operator for
other purposes than invoking implementations of virtual
operations in supertypes is discouraged, since it sub-
verts the normal use of dynamic binding.

One problem with the virtual construct is that it is not
possible for a designer of a subtype to alter the choice
of which operations have been declared virtual in the
supertype. In other words, it is not possible for the
designer of a subtype to choose which inherited opera-
tions are to be invoked with dynamic binding of imple-
mentation. A designer could avoid the problem by
always declaring every operation in the specification as
virtual. As in Smalltalk-80, dynamic binding would
then always be used. On the other hand this would
also generate the additional overhead associated with
dynamic binding, for every invocation.

In AVANCE we have added a mechanism to the object
manager, and language constructs in PAL, which allows
a designer to declare a supertype as abstract in the
context section of a new subtype. This will cause the
subtype to inherit only the specification of the super-
type. Invocations of any operation on instances of the
subtype will be dynamically bound, even if the invoca-
tion is made from a type compiled against the super-
type. We use one bit of a bit-vector component in
packet references (see figure 5 in section 4.1) to indi-
cate whether or not dynamic binding always should be
used. Instances created from types which have declared

one or more supertypes as abstract will get this bit set
in the reference returned by the Create operation.15
Normal invocations, which use static binding, will have
the added overhead of a test on one bit which is negli-
gible. Invocations on virtual operations will not be
affected. Invocations which would have been static, but
which find the bit set will have an overhead which is
greater than that of virtual. This is because the object
manager has to convert the static binding invocation
into one of dynamic binding and this will involve extra
searching at run-time.

Since declaring a supertype as abstract will cause extra
overhead on all invocations on all instances of the new
type (and all instances of subtypes to the new type), the
designer might be reluctant to use this mechanism. Still,
the mechanism is there for use in case it is needed.
In PAL endapsulation is also upheld between a type
and its subtypes. Thus, it is not possible to directly
access instance variables declared in a type from one of
its subtypes. That is why operations such as putlus-
tUpdute and putAuthor are invoked from the Edit
operation in Letter in order to modify attributes in
Document (of which Letter is a subtype). This strong
form of encapsulation is important from a software
engineering perspective, as argued by. Snyder
[Snyde87]. For packettypes it also naturally maps to
the mutual independence of packet-slices at the object
manager level (see section 4). Wegner has argued that
distribution is inconsistent with inheritance CWegne871.
AVANCE/PAL is a counterexample to this. The
different slices of one packet may be distributed over
several nodes. This is possible because the representa-
tion of a packettype is not inherited explicitly. Com-
munication between the different types of one packet is
only allowed through packet operations (having the
indirection of a remote procedure call) and not by
shared instance variables.
For datatype values the argument for this strict form of
encapsulation is not quite as strong. The representation
of a datatype value is always maintained as one unit
and can not be distributed in the way a packet can be.
In fact it has been argued that access to the representa-
tion of a type from descendants is often desirable for
reasons of reusability ([Meyer881 pp 272-274).
Because of this we may in the future relax the encapsu-
lation of datatypes (not packettypes) to allow subtypes
to access the instance variables of a supertype.

1s Datatype values are not identified and manipulated by
references, but each value of a user-defined datatype. internally
has a reference to its executable type slice. The corresponding
bit may then be set in this reference.

214 OOPSLA ‘88 Proceedings September 2530,198

3.6. Local Consistency and Interpreted PAL

Since PAL is strongly typed and at the same time type
extensible without going outside the system, there must
be some “loopholes” for adding new functionality to the
system. One such loophole is the virtual construct
which through dynamic binding allows a type to
operate on instances of yet to be defined types. This
requires that specifications be known a’priori at least
for entry-points to applications. A designer may create
a subtype to packettype Application which has a virtual
operation main declared in its specification. This gives
a standardized entry-point and for most purposes this is
enough.

There are still some cases where it may be needed to
construct calls on objects where the objects type
specification is unknown (or not completely known) at
compile-time. PAL has a pre-defined datatype Znvoca-
tion for this purpose:

DATATYPE Invocation;
SPECIFICATION
PUBLIC

OPERATION putInstance(instance : Value) : Invocation;
OPERATION putOpName(opname : Text) : Invocation;
OPERATION putArgs(args : List(Value)) : Invocatim;
OPERATION putRetVah(mvals : Integer) : Invocation;
OPERATION invoke0 : Invocation;
OPERATION getRetVal(retval : Integer) : Value

END lnvocatioIl:

The following would prepare a call on the Edit opera-
tion of a document

invoc : Invocation;
dot : Ref(Document);
1st : List(Value);
author : Text;
.
.

invoc.putInstance(doc).putOpName(”Edit”).
putArgs(lst.insert(author));

A value of Invocation is just like any other datatype
value, it may be passed around as a parameter, kept
persistently in an attribute, etc. To actually evaluate
the invocation the operation invoke is used. PufRet-
Vals and getRetVa1 are used if return values are of
interest. The arguments passed to an operation when
using an Invocation value consists of a list of values. A
run-time check (downwards qualification) will be done
for each argument. Similarly, return values are simply
values and must be qualified to something more specific
if they are to be used. The actual invocation is done
using the same mechanism (in the object manager) that
is used for the virtual construct.

We require objects to maintain local consistency. By
this we mean that an object may operate on other
objects of any type as long as it has certified by
qualification that the other object conforms in
specification to one of the types in its own context. In
the case of parameter passing it is up to the invoker to
supply type correct arguments and the invokee to suply
type correct return values.

For purposes of bootstrapping and prototyping
AVANCE has a second interpreter, besides the p-code
interpreter (see fig 1.). This interpreter directly executes
a subset of PAL. In operating systems terms it
corresponds to a command language shell. Input to the
PAL interpreter is a List(Text) object where it parses
one line at a time and attempts to execute it. It uses a
less strong form of typing than compiled PAL and is
prepared to handle any of a number of exceptions gen-
erated by the object manager layer. All invocations,
except invocations on primitive datatypes, use the
dynamic binding mechanism of the object manager. If
the interpreter encounters the operation Znteruct() it
will obtain lines of input interactively from the user
until the user writes the command retrunt).

3.7.

The

Homogeneity

distinction between packettypes and datatypes in
PAL is a disadvantage from the perspective of homo-
geneity. It might be argued that the decision on whether
an object should be persistent or not should be made
automatically by the system. We introduced the distinc-
tion mainly because it simplified the implementation of
AVANCE enormously. For example, the “small object
problem” is considerably reduced. A programmer which
is unsure whether to implement an objecttype as a data-
type or as a packettype should probably implement it as
a datatype. A corresponding packettype with its
increased overhead is easily made if needed, by encap-
sulating a datatype value in an attribute and writing the
corresponding (trivial) packet operations. The reverse
is also possible: encapsulating a reference to a packet in
a datatype. But this will not undo the overhead.

Not only programs and data, but also me&data (object-
types) should be objects in an OMS. An objecttype is
a description of a set of instances in the system. How-
ever, objecttypes can also be regarded as instances of a
meta objecttype. To represent objecttypes PAL has a
predefined packettype TypeDef. TypeDef is specialized
into DatatypeDef and PackettypeDef. This view is
necessary since we want to instantiate new types from
within the system and add them incrementally without
having to recompile the whole system. A new packet-
type (or datatype) is created by making an instance of
PackettypeDef (or DatatypeDefi. For example, Letter is
instantiated from PackettypeDef and made a subtype of

September 2530.1988 OOPSLA ‘88 Proceedings 215

Documenr, which is also instantiated from Packzt-
typeDef but a subtype of Packet. Letter may in its turn
be instantiated into ordinary letters. The meta object-
types define a representation for PAL source code, p-
code (compiled code), and operations for manipulating
the representation, e.g., EditSpecijication, EditImple-
mentation, CompileSpecification, and Compilelmple-
mentation.

In order to take advantage of the uniformity a “data-
dictionary” facility is created by the compiler. A few
extra operations are generated automatically for every
objecttype.16 Among these are getTypename, getopera-
tions, and getParameters. Hence. any object can be
queried about its type properties. This is good both for
learning about objecttypes (in interpreted PAL) and for
constructing objects where the logic is affected by
“me&data”.

3.8. Processes

An AVANCE process is the root of an invocation tree.
Processes are created and manipulated using the
parameterized Process datatype which is similar to the
C&X objects of ConcurrentSmalltaIk [Yokot87] and
the futures concept of actors [AghaS7]. Any PAL
expression (not statement) may be executed in its own
new process by placing it in square brackets. The fol-
lowing code segment starts separate processes for send-
ing a letter to all mailboxes:

FOREACH mbox IN mailboxes DO
[mbox$DeliverMaiI(SELF) 1;

The value of the bracketed expression above is of type
process(). l7 In the above case the invoker is not
interested in any result returned by the expression. To
be able to obtain the result of executing a process the
process value must be retained.

pi-c : Process(Integer);
itg : Integer;

pie := [1+2];

itg := prc.result();

In this example the integers 1 and 2 are added in their
own process. Later the result is fetched and assigned to
the variable itg. The expression [I+21 returns immedi-

16 They are virtual operations in both Packet and V&U.

17 Because the DeliverMail operation of Mailbox d-s not
return anything the Process value is pmmeteriz.cd with nothing.

ately with a process value which is assigned to prc. The
prc.result() expression synchronizes with the other pro-
cess to obtain the result, i.e., if the other process is
finished then the value is returned, otherwise the calling
process will wait.

The only means of communication between processes is
through shared access to packets and the initial and
final passing of arguments and return values via the
Process object.

4. The AVANCE Virtual Machine

The distinction between packets and datatype values is
reflected at all three abstraction levels of the axchitec-
ture (see fig 1). A packet at the level of PAL is
represented by a set of packet-slices at the level of the
object manager. The object manager provides a single
level store for packet-slices, handles references to
packet-slices, and controls the execution of processes.
What unites conceptually a set of packet-slices into one
abstract packet is a common identifier. A packet-slice
consists of a set of persistent attributes belonging to
one specific packettype. The usual reason that a packet
is represented by more than one slice is property inheri-
tance. For each type that a packet is an instance of
there will correspond a slice, containing exactly the
attributes belonging to that specific type. However, the
slices of a packet are independent from each other from
the perspective of the object manager, and it does not
place any restrictions on which slices of a packet are
created and destroyed. Restrictions, such as those
implied by property inheritance, are defined and
enforced at the PAL level. Inheritance is realized at the
object manager level by a flexible invocation mechan-
ism which allows type slices to delegate [Stein87] the
implementation of operations to other type slices. A
packet could in principle dynamically change its type
structure or even consist of types which are uncon-
nected by inheritance. A packet could also be distri-
buted over a network, by having slices at different loca-
tions. Datatype values on the other hand always have
their whole representation kept together as one unit by
the object manager.
At the object manager level, a crude form of object
orientation is provided by an invocation/return cycle
operating with packet-slices and references to slices.
Datatype values are simply datastructures at this level.
Within the context of a compiled operation, an inter-
preter is given control. The interpreter performs the
actual execution of operations on both packet-slices and
datatype values. When the operation terminates, con-
trol is returned to the object manager. The passing of
call and return parameters for operations of non-
primitive types is also handled by the object manager.
Since parameters are passed by value they will be

216 C3PSL.A ‘88 Proceedings September 2540.1988

copied, but the copying is deferred until the partieter
is actually accessed by the interpreter.
All the primitive datatypes use a low level representa-
tion which the object manager understands enough to
preserve structure and content. The object manager
takes care of transporting such values between secon-
dary storage and the cache, and between the cache and
the interpreter(s). It is possible to add new primitive
datatypes, but this requires modification to the inter-
preter layer and a static relinking of the system. This is
expected to be relatively rare. It would only be done
for datatypes which need to be optimized, or to add
basic functionality missing from the current set of prim-
itives.

The normal way to add a new object type to the system
is to define it in PAL, compile it and install it. The
installation of a new packettype or datatype is
effectively a form of dynamic linking which does not
disrupt the normal operation of the system.

4.1. References and Invocation

Figure 5 illustrates a packet reference as it is
represented in the object manager.

Obrect Manager

Fteference list.
.

.

.

__, 73 OOlgF6 02OOrW 011 o...
4 4 A

l

.

ID for operational type

ID for instance

Bit-vector

Figure 5: A desciptor in the interpreter
identifies a packet reference in the
object manager.

It contains two identifiers plus a bit-vector used by the
object manager to maintain information about the refer-
ence. The two identifiers in combination identify a
packet-slice. Packet references never leave the object
manager. The interpreter layer manipulates references

indirectly by using descriptors. For each packet-slice
the object manager maintains an associated list of refer-
ences “owned” by that slice. A descriptor identifies a
reference in the list. This ensures that the basic capabil-
ity based protection mechanism ILevy of the object
manager is not vioIated. When a descriptor is part of a
datatype value which is assigned to a persistent attri-
bute, the object manager will make the corresponding
reference persistent.
The object manager handles the invocation of opera-
tions on packet-slices. In other words, when given a
descriptor, and an operation to invoke, it finds the
correct packet-slice of both the type (holding the code)
and the instance (holding the instance variables) and
starts the correct interpreter to execute the code of the
operation. To find the type slice the object manager
creates a new reference based on the reference identify-
ing the instance. The operational type identifier of the
instance reference becomes the instance identifier of the
new reference. The operational type identifier of the
new reference is an identifier for executabfes known to
the object manager.

4.1.1. Transaction Management

The object manager employs a low level version
management mechanism inspired by the work of Reed
&ed78]. The details of this mechanism are explained
in another paper [Bjam88], only an outline is given
here. Packet slices are maintained in time-stamped ver-
sions by the object manager. A packet operation which
updates a slice will generate a new version of that slice.
Versions are tentative until the operation which gen-
erates them has committed. Old versions of a slice are
kept by the object manager for at least the time needed
to complete the trmsaction generating a new version.
Versions may also be kept for longer if applications
need them. The unit of synchronization and system ver-
sion management is the packet slice. The unit of action
on a packet-slice is the packet operation. A nested tran-
saction scheme is used where each packet operation is
regarded as a (sub)transaction. A top (independent)
transaction is indicated by using ‘#’ as invoke operator
on a packet operation. When an operation is invoked
the object manager prepares for access to three different
slice versions in the cache.
. The operational type version slice (always

located, read-only).
b The instance read version slice (may be omitted,

read-only).
b The insfunce write version slice (may be omit-

ted, both read and write allowed).
The code for all specific (non-inherited) operations of
one type resides in a slice belonging to the type. The

September 2!530,1988 OOPSLA ‘88 Proceedings 217

object manager must locate the correct version of this
Slice if there are several versions due to the type having

been updated. The read version is the “latest” version
of the instance slice valid before the current invocation.
The write version is the new slice version to be gen-
erated by the current invocation.

Since the read version and the write version may be
omitted there are four kinds of invocations:
. Read-only. The operation accesses attributes, but

does not assign to them or apply modifying data-
type operations to their values. The write version
is omitted,

b Modifying. The operation both reads and yyrites
attributes and makes some reads before writes.
Both the read and write version is needed.

. Independent. The operation only writes (assigns)
to attributes, or assigns to attributes before read-
ing them. The read version is omitted.

. No-instance. The operation does not access attri-
butes. Both the read and write version is omitted.

This classification of operations is used by the object
manager to reduce overhead and to increase potential
concurrency. The classification is done automatically
by the PAL compiler. For example, the no-instance
class does not need any synchronization. It is similar
to what Hewitt has called an unserialized actor
lIIewit84], except that here it is not the packet (or
actor) as a whole being serializable or not, but the
operation (or part of the behavior). Such an operation
does not access the instance as such. The operations of
datatypes defined in PAL are much like no-instance
packet operations from the object managers point of
view. The object manager will only need to fetch the
operational type version slice since for a datatype value
there is no instance slice. The value instead resides on
the local stack

4.2. Decentralization

Although functions for handling more than one node
have not been fully implemented ‘yet in AVANCE we
think it important to describe how the AVANCE archi-
tecture is appropriate for decentralization.

4.2.1. Object Identity

Object identity has been recognized as important
[Khosh86] particularly in a system such as AVANCE
with both persistent objects and decentralization. The
distinction between packets and datatype values
significantly reduces the number of identifiers needed
For AVANCE we consider the advantage of a common
identification scheme important enough to sacrifice
some of the symmetry of the logical network (see

figure 2). Each node has a sequence of unused
identifiers. When a new packet is created at a node, an
identifier is taken from the sequence and associated
with the new packet. When a node is about to run out
of identifiers, it communicates with one specific other
node, which has been designated as the identijier gen-
erutor node, (IGN) and replenishes the sequence. This
introduces a slight centralization in the system, since all
nodes will be dependent on the IGN. The event of run-
ning out of identifiers can however be made as infre-
quent as desired by making the replenishing sequence
sufficiently large. The margin allowed before ordering
new identifiers from the IGN may also be made large
to give ample time for the order to be effected. Further-
more, if the IGN intends to close or otherwise become
unsuitable as the IGN, it may dynamically request
another node to take over the IGN function. This is
done by moving a special IGN-packet to the new IGN.
If the IGN node does close, or become unavailable to
some nodes, then these will be forced to close when
they run out of identifiers.
There are several other details and enhancements to this
scheme not covered here,** the main point here being
that identifier generation is not a big problem.

4.2.2. Low Level Representation

For the representation of values of the primitive data-
types we have designed a special language for defining
composite data structures. We have implemented func-
tions in the object manager, that given such a data
structure description, can generate a primary storage
structure, and a corresponding serialized structure for
use on secondary storage and for node-local communi-
cation. The normal AVANCE user/programmer does
not have to be concerned with these low level data
structures. They are only visible to the implementor of
a primitive datatype. User defined packet/datatypes are
defined as abstract datatypes and use the primitive data-
types (as abstract datatypes) for defining their internal
representation.

4.2.3. Communication Protocol

Because the invocation of packet operations has a
remote procedure call semantics, it allows for any of a
number of lower level communication protocols, for
example the Sun RPC/XDR facility [Sun861 is one pos-
sibility. The representation form described in the previ-
ous section is not machine independent. For data to be
communicated between nodes we will not use our Own

18 One could have a hierarchy of IGN’s to reduce the pb-
lem of one IGN becoming a bottleneck. This could improve
both perfomanee and reliability.

218 OOPSLA ‘68 Proceedings September 2!5-30.1988

serialization routines, but instead serialize to a represen-
tation which is machine independent, such as XDR. On
top of this we need our own protocol for movement of
packet(slice)s between nodes, remote packet (slice)
operation invocation, and transaction management with
two phase commit [Gray78]. The transaction manage-
ment protocol will not be further discussed.

Movement of packets

A packet slice can only reside at one node at a time,
but replicas of the versions generated at the node may
be given to other nodes. The meaning of a slice resid-
ing at a node is that the node has the right to update
the slice, i.e., generate new versions of the slice localy
by executing modifying or independent operations
localy. Other nodes may only acquire replicas of
already existing slice versions. To move a packet slice
from one node to another, first the latest valid slice is
replicated on the destination node, then the update right
is moved. This has to be done as an atomic operation
and uses the same transaction protocol as used with
normal packet operations.

Remote invocation

The invocation of a packet operation will result in the
object manager trying to locate the correct slice of both
the type and the instance involved from the information
in the reference. If the correct type slice is not found
locally then the invocation will fail. If the type slice is
found, then the object manager attempts to look up the
slice of the instance belonging to that type. If this fails
then the object manager will “guess” on which node the
instance slice is located and pass the original invocation
on to that node. If the other node succeeds it simply
returns the result of the invocation. If it fails for the
same reason that the original node failed, the other
node will make a “guess” on the location of the
instance. However, instead of directly passing the
invocation on to its guess the other node returns the
guess to the original node which makes a new guess,
perhaps based on the guess returned by the previous try
etc. In the worst case the original node will attempt to
communicate with every other node it knows of. Once
the location of the instance has been found the object
manager will remember this location as a tlrst guess for
the next invocation on the same instance slice. The
idea of guessing or using a “soft” form of addressing
for locating objects at other nodes has been borrowed
from the Xerox Clearinghouse [Oppen83].
An invocation of an operation which is read-only can
sometimes be executed locally even if the instance slice
does not reside at the node. This will be possible if the
node has old versions (or replicas) of the slice and the
reference used in the invocation is bound to a time

where an old version is known to be valid.

4.2.4. Distributing a new type

The predefined types (primitive datatypes and system
defined packettypes) form a substrate common to all
nodes. When a new type is defined in the system it will
bc represented as a packet and thus have its own global
identilier. It is not enough to just compile a type to
make it available for use as a type. The compiled type
must be installed. This is done on a per-node basis,
usually starting with the node on which the type was
created. The installation of a type at a node creates an
executable operational type slice of the type at the
node. Thus, a type maintains its identity over all nodes
where it is installed. The installation of a type involves
issues of type version management discussed in
[BjUm881.

5. Summary

AVANCE is an OMS integrating programming and
database management by providing a single level store.
The object space is partitioned into packets and datu-
type values. This simplifies the implementation of the
system and also gives the PAL programmer control
over which objects should be persistent or shared. The
AVANCE architecture provides three levels of abstrac-
tion: the low-level object manager, the pseudo-code
interpreter, and the PAL programming language. The
architecture is also geared towards decentralization, by
the remote procedure call semantics of packet opera-
tions, by the very large identifier space, and by the use
of immutable versions of slices of packets generated by
atomic actions.
The object manager provides a low level object
oriented and capability based operating system, includ-
ing an invocation mechanism that synchronizes
processes by making operations on packet-slices atomic.
The invocation of an operation on a packet (slice) is the
point of indirection where dynamic binding may be
applied to procedure implementation, instance version,
type version and instance location. The possibility of
adding new interpreters and compilers allows for a mul-
tiparadigm language environment. Although the basic
paradigm provided by the object manager is object
oriented, the language used for writing the implementa-
tion of a type’s operations could be any language for
which a compiler and/or interpreter is provided.

6. Acknowledgements

Besides the authors, the following people have been
involved in the specification and implementation of
AVANCE: Matts Ahlsen, Stefan Pa&son and Dr.
Christer Huh&r.

September 25-X41988 OOPSIA ‘88 Proceedings 219

References [Cox86].

[Agha87].
G. Agha and C. Hewitt, “Actors: A Conceptual
Foundation for Concurrent Object-Oriented Pro-
gramming,” in Research Directions in Object-
Oriented Programming, ed. B. Shriver and P.
Wegner, pp. 49-74, The MIT Press, 1987.

[Ahlse84].

13-J. Cox, Object Oriented Programming An Evo-
lutionary Approach, Addison-Wesley Publishing
Company, 1986.

[Goldb83].

M. Ah&n, A. Bjiimerstedt, S. Britts, C. Hulten,
and L. S&lerlund, “An Architecture for Object
Management in OIS,” ACM Transactions on
Office Information System, vol. 2, no. 3, July
1984.

[Ahlse85].

A. Goldberg and D. Robson, Smalltalk- The
Language and its Implementation, Addison Wes-
ley, 1983.

IGray781.
J.N. Gray, “Notes on database operating sys-
tems,‘* in Operating Systems, ed. R. Bayer, R.M.
Graham, and G. Seegmuller, pp. 393-481,
Springer-Verlag, Berlin, 1978.

[Gray861.

M. Ahlsen, A. Bjiirnerstedt, and C. Hulten,
“OPAL: An Object-Based System for Applica-
tion Development,” IEEE Database Engineering
Bulletin, vol. 8, no. 4, pp. 3140. Dec. 1985.

EAhlse871.

J.N. Gray, “An Approach to Decentrahzed Com-
puter Systems,” IEEE Transactions on Software
Engineering, vol. SE-12, no. 6, pp. 684-692,
1986.

[Hewit84].
M. Ah&n, A. Bjiimerstedt, S. Britts, and S.
Paulsson, “PAL Reference Manual,” WP No
125, SYSLAB, University of Stockholm, Stock-
holm, Sweden, 1987.

[Andre87].
T. And.rews and C. Harris, “Combining Language
and Database Advances in an Object-Oriented
DeveIopment Environment,” Object-Oriented
Programming Systems, Languages and Applica-
tions, pp. 430-440, Oct. 1987.

mrhv73].

C. Hewitt and P. deJong, “Open Systems,” in On
Conceptual Modelling, ed. M.L. Brodie, J. Mylo-
poulos and J.W: Schmitt, pp. 147 - 164,
Springer-Verlag, New York, 1984.

[Hoare74].
C.A.R. Hoare, “Monitors: an operating system
structuring concept,” Communications of the
ACM, vol. 17, no. 10, pp. 549-557, Oct. 1974.

[Homi87].

G. Birtwistle, O-J Dahl, B Myhrhaug, and K.
Nygaard, Simula Begin, Auerbach, Philadelphia,
1973.

lBjBm881.
A. Bjomerstedt and C. H&en. “Version Control
in an Object-Oriented Architecture,” in Object-
Oriented Concepts, Applications, and Databases,
ed. W. Kim and F. Lochovsky, Addison-Wesley,
1988.

M.F. Homick and S.B. Zdonik, “A Shared, Seg-
mented Memeory System for an Object-Oriented
Database,” ACM Transactions on Office Informa-
tion Systems, vol. 5, no. 1, pp. 70-95, Jan. 1987.

[lEEE85].
IEm, “Special Issue on Object-Oriented Sys-
tems,” IEEE Database Engineering Bulletin, vol.
8, no. 8, Dec. 1985.

[IEEE861.

[Black86].
A. Black, N. Hutchinson, E. Jul, and H. Levy,
“Object Structure in the Emerald System,”
Object-Oriented Programming Systems,
Languages and Applications, pp. 78-86, Portland,
Oregon, 1986.

[Carey86].

IEEE, Proceedings: I986 International Workshop
on Object-Oriented Database Systems, IEEE,
Sep. 1986.

[Khosh86].
S.N. Khoshaiian and G.P. Copeland. “Object
Identity,” Object-Oriented Programming Systems,
Languages and Applications, pp. 406416, Port-
land, Oregon, Sep. 1986.

Lww .
M J. Carey, D.J. Dewitt, D. Frank, G. Graefe, M.
Muralikrishna, J.E. Richardson, and E.J. Shekita,
‘The Architecture of the EXODUS Extensible
DBMS,” Proceedings: I986 International
Workshop on Object-Oriented Database Systems,
pp. 52-65, Pacific Grove, California, 1986.

H.M. Levy, Capability - Based Computer Sys-
tems, Digital Press, 1984. ISBN O-932376-22-3

Fisko811.
B. Liskov, R. Atkinson, T. Bloom, E. Moss, J.C.
Schaffert, R. Scheifler, and A. Snyder, CLU

2a OOPSLA ‘88 Proceedings September 2!5-30,1988

Reference Manual, Springer-Verlag, Berlin,
Heidelberg, 198 1.

lLisko831.
B. Liskov and R. Scheifler, “Guardians and
Actions: Linguistic Support for Robust, Distri-
buted Programs,’ ’ ACM Transactions on Pro-
gramming Languages and Systems, vol. 5, no. 3,
pp. 381-404, July 1983.

FIaier861.
D. Maier, J. Stein, A. Otis, and A. Purdy,
“Development of an Object-Oriented DBMS,”
Tech. Rep. CS/E-86-005, Oregon Graduate
Center, April 1986.

IMeyer881.
B. Meyer, Object-oriented Software Construction,
Prentice Hall, 1988.

lNiers871.
O.M. Nierstrasz, “Active Objects in Hybrid,”
Object-Oriented Programming Systems,
Languages and Applications, Orlando, Florida,
Oct. 1987.

[Oppen83].
D.C Oppen and Y.K. Dalal, “The clearinghouse:
A decentralized agent for locating named objects
in a distributed environment,” ACM Transactions
on Office Information Systems, vol. 1, no. 3, July
1983.

lPurdy871.
A. Purdy, B. Schuchardt, and D. Maier,
“Integrating an Object Server with Other
Worlds,” ACM Transactions on Office Ir&orma-
tion Systems, vol. 5, no. 1, pp. 27-47, Jan. 1987.

ljwd781.
D.P. Reed, “Naming and Synchronization in a
Decentralized Computer System,” MIT/LCS/TR-
205. MIT L&oratory for Computer Science,
Cambridge, Massachusetts, Sep. 1978.

[Schaf86].
C. Schaffert, T. Cooper, B. Bullis, M. Kilian, and
c. Wilpolt. “An introduction to Trellis/Owl,”
Object-Oriented Programming Systems,
Languages and Applications, pp. 9-16, Portland,
Oregon, Sep.’ 1’986..

[Snyde87].
A. Snyder, “Inheritance and the Development of
Encapsulated Software components,” in Research
Directions in Object-Oriented Programming, ed.
B. Shriver and P. Wegner, pp. 165188, MIT
Press, Cambridge, Massachusetts, 1987.

CSteix-1871.
L.A. Stein, “Delegation Is Inheritance,” Object-
Oriented Programming Systems, Languages and

Applications, pp. 138-146, Orlando, Flotida, Oct.
1987.

[Stonegll.
M. Stonebralcer, “Operating System Support for
Database Management,” Communications of the
ACM, vol. 24. no. 7. July 1981.

[Stone861.
M. Stonebraker and L.A. Rowe, “The design of
Postgress,’ ’ ACM SIGMOD Proceedings, pp.
340-355, Washington DC, June 1986.

[Strou861.
B. Stroustrup, The C++ Programming Language,
Addison-Wesley, 1986.

[Sun86].
SW-h “Remote Procedure Call Programming
Guide,” Revision B, Sun Microsystems, 17 Feb.
1986.

[Svobo841.
L. Svobodova, “Resilient Distributed Comput-
ing,” IEEE Transactions on Sofhvare Engineer-
ing, vol. SE-lo. no. 3, pp. 257-268, May 1984.

IWegne871.
P. Wegner, “Dimensions of Object-Based
Design,” Object-Oriented Programming Systems,
Languages and Applications, pp. 168-182,
Orlando, Florida, Oct. 1987.

[Yokot871.
Y. Yokote and M. Tokoro, “Experience and Evo-
lution of ConcurrentSmalltalk,” Object-Oriented
Programming Systems, Languages and Applica-
tions, pp. 406-415, Oct. 1987.

September 25-3X1988 OOPSLA ‘88 Proceedings 221

