
The Systems Development
and

Artificial Intelligence Laboratory

SELECTING A STRATEGY FOR
COMPUTER-AIDED SOFTWARE ENGINEERING (CASE)

Janis A. Bubenko Jr

SYSLAB
University of Stockholm
SYSLAB Report No 59

June 1988

)

)

Dep4ttment of Computer Sciences
Chalmers University of Technology and the University of GOteborg
5-41296 Goteborg Phone 46-31·81 01 00

Department of Information Processing and Computer Science
The Royallnstl!ute of Technology and the University of 5tockt!0lm
5-106 91 Stockholm Phone 46·8-16 20 00

Janis A. Bubenko jr 1

SELECTING A STRATEGY FOR
COMPUTER-AIDED SOFTWARE ENGINEERING (CASE)

Janis A. Bubenko jr

Swedish Institute for Systems Development (SISU)
Box 1250, S-164 28 KISTA, Sweden

and
SYSLAB

Univ. of Stockholm and the Royal Institute of Technology
S-106 09, Stockholm, Sweden.

SYSLAB Report Nr. 59
June 1988

ABSTRACT

The purpose of this report is to raise the issue of CASE, in particular the question which actions to
take now and which strategy to choose for an organization to "enter" the CASE area. The issue is
motivated by the large number of CASE-tools commercially available today. Practically all of them
support a particular methodology and a software life-cycle paradigm. Buying such a tool implies
the necessity for your organization to switch to that particular tool's methodology. On the other
hand, there is the option to develop a CASE tool for your own method. This can be done by using
a CASE-"shell", a software environment which provides advanced facilities to build your own
tools. Such CASE-shells are beginning to appear on the market. Which alternative to choose
depends on many factors. In order to obtain a better understanding of the complexity of this issue
and in order to obtain a perspective on the problem, the state of the art and research directions in
method deveopment as well as in development of CASE environments are fIrst surveyed. The
report also presents a set of general, functional features of CASE tools and oulines a general
architecture of a CASE environment. Next, a set of possible strategies, ranging from "wait and
see" to a hevy engagement in building your own CASE, are outlined. The concluding parts of this
report then discusses the selection of a strategy based on a number of situational factors of your
organization. The main conclusion is that serious engagement in application of the CASE
technology requires very competent staff and a full commitment from the management.

The state of the art and the research sections of this report includes a large number of references. It
can, therefore, also be used as an entry point to further reading and/or to looking for research
topics in the CASE area.

Janis A. Bubenko jr 2

Introduction
One of the main questions addressed by this report is "shall we let our information system
development methodology determine the tool to use or shall we switch to the methodology offered
by some of the commercially marketed tools"? The question is motivated by the large number of
CASE-tools commercially available today. Practically all of them support a particular method and
a software life-cycle paradigm. Buying such a tool implies the necessity for your organization to
switch to that particular tool's method. On the other hand, there is the option to develop a CASE
tool for your own method. This is then done by using a CASE-"shell". Such CASE-shells are
beginning to appear on the market. Which alternative to choose depends on many factors. In order
to get a better understanding of the complexity of this question, and to obtain a perspective on the
CASE issue, this report first surveys the state of the art of method development, CASE-tool
development, and presents an overview of current research related to CASE. Section 4 offers
some thoughts on the problem of choosing a strategy for CASE.

1. Methods - state of the art and trends

1.1 State of the art
The software and information systems engineering is still in a crisis with respect to productivity,
maintenance costs as well as to the quality of the design products. Industry's currently most
popular methods were created in the seventies (e.g. the well-known process oriented methods
SASD, SADT, JSD, ISAC , and the data-driven methods ER, NIAM, and others). Many efforts
to compare, feature-analyze, and assess methods can be noted. For instance, the IFIP WG8.1
CRIS conference series [Olle82, Olle83, Olle86] has reviewed a large number of "historical" as
well as new and research-type methods and has made an attempt to assess their traits and features.
The CRIS efforts, and others as well, show that methods are very difficult to compare and to
assess due to differences in their conceptual foundations and frameworks. Work has been initiated
to establish a conceptual framework within which methods could be more strictly defined, better
understood and, perhaps, compared [CRIS-taskgr, FRISCO].

Within the ESPRIT project realm, a few projects have focussed on frameworks and formalisms
(languages) to describe methods (e.g. the projects ToolUse [Ryan86], and DAIDA
[Borgida87,Jarke88]), and on devising a common semantic model by which methods could
co-operate and exchange design information (the AMADEUS project [Laucop87]).

We can conclude that there currently exists a considerable interest in better understanding and use

Janis A. Bubenko jr 3

of "old" methods and in improving them by co-operation with related methods or by integrating
them in order to improve their life-cycle coverage and 'power'. An example of this is the
integration of process oriented methods with data oriented methods.

In spite of widespread use of popular methods, research experiments show that use of them often
present more problems than solutions. For instance, an investigation by Floyd [Floyd86] shows
that some popular methods are based on rather 'fuzzy' concepts, and that rea,sonably precise
guidelines for their use are often missing. Other investigations [Brodie8?] show that the practical
use (in the US) of more strict methods for the conceptual and logical design stages of the
development life-cycle is scarce. In spite of the common awareness of the importance to catch
design errors as early as possible, it is estimated that, perhaps, no more than 15% of all
professionals ever perform a, so called, "conceptual design" (a design stage where high level,
strict and conceptual specifications of the application and the requirements are created). Another
illustrative estimate by Yourdon is reported in [Chik088]: 90% of the professionals are familiar
with hierarchical, data-flow diagramming techniques, and about 50% have experimentally used
the technique. However, only 10% are expected to use the technique actively.

1.2 Research on methods
Research on new and improved methods are manifested by efforts to bring together approaches
from the programming language, database, information system, and AI-communities. A series of
workshops have been held with representatives of these areas (see, for instance, two books by M.
L. Brodie et al. "On Conceptual Modeling .. " [Brodie84], and "On Knowledge Based
Management Systems" [Brodie86], which contain many articles and references). Some notable
trends in methods research and development are

• increased object-orientation (a contribution from the prograrruning language area)
• increased use of formal techniques also in the very early system development stages
• increased use of deductive and rule-based methods
• gradual adoption of 'knowledge-based' techniques to support the system development

process as well as the use of the system

Object orientation implies that an application is modelled in terms of communicating, persistent
objects (at different generic levels) (see for instance the AVANCE system being developed by
SISU [Bjorn88]). The object oriented style improves flexibility, maintainability, component

reusability, and supports decentralized architectures.

The importance of capturing user requirements right has stimulated research in languages for

Janis A. Buhenko jr 4

capturing and describing knowledge of the application domain (its structure and behavior) and of
the information requirements in early development stages. Knowledge representation techniques
are now being investigated to capture this knowledge. The domain knowledge is then to he used
in other design stages for reasoning about the application, for reusing of conceptual specifications,
for semantic consistency and quality checking of designs,etc.

A related trend in methods research is towards deductive & rule based approaches (e.g. the
ESPRIT project RUBRIC [Rubric87]). The basic idea here is to capture and to explicitly express
'business rules and constraints' in a declarative style rather than to implicitly embed them in
processing procedure or transaction descriptions. Closely related to the rule-based approach is the
temporal dimension of information modeling. The basic idea of approaches which use a temporal
dimension is the ability to reason about the state of a system at any point in time (see, for instance,
the ClAM-method [Gustaf82], the ERAE-model [Dubois86a], and the DADES-method
[Olive86]). Of particular interest is the very complex case when not only the contents of a database
changes with time but also the schema, describing the database contents and constraints, changes,
reflecting changes in the application [Abbod87, Martin8?].

The use of knowledge based techniques in systems development is closely related to increased use
of computer-based support tools and environments for this process. Research is under way how
to assist a CASE user to use a method in an effective way, how to assist him in the process of
validating and in verification of specifications, etc. (see, for instance, proceedings from
workshops and conferences such as [RADC87]).

Obviously, there exists a considerable, multi-faceted research activity in this field. However, little
of this research is currently being absorbed, or even observed, by professionals in industry and
business. The methods used by most practitioners are of the early seventies. It is, however, most
probable that the increased use of CASE-tools will accelerate the use of more advanced methods in
practice. It has also been observed that the effort to build CASE tools for own "in-house"
methodologies and to apply the tools to real projects in the own organization, creates in many
cases a deep insight in the potential of such tools, and stimulates research on further extending and
developing the methodology as well as the tool. The rest of this report will deal with CASE.

2. General functional features of CASE-tools
In the following, we will denote a CASE-tool a software environment, that assists a systems
analyst and designer in the process of designing, specifying, analyzing, and maintaining a
software product (an information system). We assume the tool supports a particular methodology,
covering substantial parts of the systems life cycle. First we will discuss some general,

Janis A. Bubenko jr 5

methodology independent, features of such tools. Not all tools on the market today possess all
these features to a substantial degree. Next, we outline a crude, general architecture of a CASE
tool. The purpose of this section is to present a general framework to use when looking at
specific tools.

2.1 General features
The major task of a CASE tool is to accept different kinds of specifications, analyze the
specifications, transform specifications, and maintain a large, ever growing set of interrelated
specifications. Furthermore, a good tool must also give various kinds of support and guidance to
its users. The term specification refers generally to everything a designer is supposed to input to
the tool according to the particular methodology and its specification languages. We partition the
functional features of a CASE tool as follows.

User interaction

The most striking feature of most tools today is their user interface, permitting the designer to
work with graphical, form-based and textual input/output, often in a multi-window mode. It is
difficult to state some general requirements concerning the user interface, except that it should be
easy to enter specifications, and that inputting one kind of specification normally requires the
concurrent display of (parts of) several other specifications or access to other information (e.g.
data term catalogues, concept dictionaries, etc.). It should be possible to enter specifications in an
incremental and fragmented fashion, i.e. starting with "skeleton" of a specification structure and
then adding details whenever appropriate. The ability to work with menu-driven and windowing
techniques seems an important feature, but there is no evidence that this is the only and the best
way to interact with a CASE tool.

Concerning output, it should be possible to selectively present fragments, and skeletons of
(projections of) the specifications (in graphical, tabular and textual form), directed by user queries
and projection directives. Browsing, and if appropriate, hierarchical navigation in the specification
structure, should be possible. The ability of a CASE tool to generate documentation, including
graphs, forms, and tables, of selected parts of the specification is an important feature.

Verification support
The purpose of verification is to ensure that a specification is complete and formally correct.
Syntax checking is an obvious feature of most tools. The next level of verification is checking of
the semantic consistency of a specification. Here several levels of ambition can be envisaged,
such as: checking the specification for violation of static constraints according to the method's
conceptual schema, checking of the derivability of information, checking for contradictory
specifications, and checking of the (intended, correct) behavior of the system according to the

Janis A. Bubenko jr 6

behavior expressed by the specification. As, from a theoretical point of view, complete
verification is not possible, CASE tools normally adopt a pragmatic approach, and seek practical,
partial solutions to the verification problem which are reasonably cost-effective.

Validation support
By validation we mean the issue - "does the specification really reflect the user needs and
his/hers intended statements about the application?". It can be expected that the most CASE
languages and methods, and in particular those with a declarative and deductive flavour, may
require a support mechanism which assists the designers informulation of valid specifications as
well as in correct interpretation of specificati.ons. For instance, the following kinds of support can

be envisioned

a) paraphrasing of graphical (formal) specifications in namrallanguage (NL)

b) paraphrasing of formal, logic-based rules an constraints in NL
c) generation of abstractions and abstracts of (parts of) specifications
d) support for reasoning about the specification, e.g. answering "what if X?", "how does X

affect Y?", and "why X?" type of queries directed at an existing specification.
e) animation or simulation (or symbolic execution) of (partS of) a specification
f) assistance in classification and concept formation (requires domain knowledge), etc.

Des}gn support
In this set of features we include support for transformation of specifications from one 'level' to
another. Examples are: view integration, restructuring of a specification, and transformation of a
non-executable requirements specification into an executable specification for prototyping (unless
the requirements specification language already is already executable). View integration is required
to combine the local specification efforts of a number of work teams working in paralleL
Restructuring implies the semantics preserving rearangement of a specification in order to improve it
according to a set of quality, performance, or other kinds of rules, or according to a designer's

restructuring directives.

DevelQpment proiect management
In this category of features we include the following features:

maintenance of design decisions and design history
communication and mail facilities
annotation management
authorization management

Janis A. Bubenko jr 7

version and configuration control
tracking support, change management
support for co-working in a decentralized design environment

These features are essential for making a CASE-tool work effectively in larger, decentralized
projects.

2.2 Outline of a generalized CASE tool architecture
The gross architecture of a CASE tool is shown in the figure below. The heart of the tool, as in all
CAD systems, is the "Design Data Base" (DesDB). The DesDB contains several "layers" of data,
explained below. A user, i.e. a designer, interacts with the DesDB via an I/O and presentation
subsystem. Several other subsystems provide support to the user in accordance with features
discussed above. The architecture is open-ended, and additional support subsystems should be
possible to add (and existing ones improved) as knowledge about them is extended and further
developed. The possibility to communicate with other CASE tools must, of course, be provided.

The design data base
The method's object schema defInes the concepts of the methodology's language(s) in terms of
kinds of specification objects, relationships, attributes, and permissible operations on them. It also
includes rules and constraints for a complete and consistent specification in accordance with the
language and method at hand.

The method knowledge part of the DesDB contains information that is used to support a user in
using a particular method developing a specification. It contains, for instance, advice to be given in
different situations, rules for checking a specification for quality flaws, etc. This part of the DesDB
is, for most tools, relatively small, but it is exoected to grow as more experience and method

knowledge is acquired.

Janis A. Bubenko jr

Designers

, r , r

8

Other CASE tools
•...--

I/O and presentation subsystem

; h ~ • A~, , • ,ir

I
::::
~:.

Verifi- Validation Design Develop- Proto- ~~:
cation subsystem ment ;.:.

Support typing, ::;:

subsyst :~
subsyst. support rode t

subsyt :~:
genera- l
tion t

::::
....
Iiii

,r :
Design-DB interface

Figure: The gross architecture of a CASE tool

The domain knowledge part of the DesDB serves to assist the specifier to use appropriate
application concepts when developing a specification. This part is also used for more advanced
types of semantic and quality checking of the specification. More advanced checking can normally

Janis A. Bubenko jr 9

only be done in the context of a particular domain.

The reusable specifications part of the DesDB indicates a possible future extension to a CASE
Environment. The ideas is to capitalize on components of "older" specifications so that new
specifications can be designed by utilising, combining and extending a "libraray" of conceptual
components.

The application specification IS a valid instance of the method object schema, developed by
designers for a particular application. Clearly, several versions of specifications (or
subspecifications) and several application specifications must co-exist and be maintained. An
application specification is designed using the various support subsystems of the CASE tool, and
using information in the above mentioned parts of the DesDB.

Executable specification denotes specifications generated from the application specifications. They
are executable, i.e. the application can actually be run on the CASE tool using the prototyping
facility (which interprets the executable specifications). The information base denotes a valid
instance of the application specification's data base schema.

The support subsystems
The various support subsystems for verification, validation, design, and development as indicated
in the architecture are according to the features discussed in the previous section. As pointed out
before, they should form an open-ended system, which can be gradually improved and extended
when more experience and knowledge is gained.

3. CASE - state of the art and trends
Work on computer-aided environments, or rather tools, to support some of the life-cycle tasks of
systems development methods can be traced back to the fifties. However, not until a few years ago,
thanks to greatly improved processing, storage, and graphics interface capabilities of relatively
cheap work-stations, the CASE area bas experienced an exponential growth in products as well as
in research prototypes.

The state of the art in this field can be described in three parts

• development of method-specific environments, i.e. tools geared to a particular method or
chain of methods

• development of customizable environments, i.e. environments which can be 'programmed'
to support a particular method, or chains of methods

Janis A. Bubenko jr 10

• research effons in this field, mainly addressing some particular analysis or design support

problem of a method (or a class of methods)

Common to most of these efforts is the assumption (see previous section) of a Design (object)

Data Base (sometimes called the 'encyclopedia'). The design data base holds information about

the specification objects, their characteristics, and relationships. The kind of specification objectS

stored by the data base is dependent on the methodology. A methodology is thus partly
defined by defining a conceptual schema of its design data base. Method-specific

tools have the schema predefined for that particular method. Customizable CASE environments

assume the tool user to define the schema in accordance with his particular method, and to

"program" the CASE shell to behave in accordance with requirements of the particular method.

Other important components of CASE tools are facilities for performing checking of

specifications, facilities for giving 'intelligent' support to the tool user, etc. Research efforts in the

CASE area are mainly directed at these latter issues.

3.1 Method-specific CASE tools
Currently there are more than 100 commercial method-specific CASE lools on the international
market [Martin88]. Typical products are lEF, [EW, BLUES, DEFT, EXCELERATOR, etc (see

[Brodie87, DAISEE'87] and IEEE Software, March, 1988 issue for surveys and tool

presentations). The price range of these products is from a few hundred US$ to several tens of

thousands of US$. These tools present a great variation of life cycle coverage and tool

functionality. Some of them are nothing more than simple diagramming tools (for data modeling,

process decomposition, etc). whiJe others suppon a wide range of design an analysis functions

around a comprehensive design data base.

Methods employed by these commercial lools are mainly approaches from the mid seventies.
Most tools support some kind of data-flow diagramming approach (e.g. the SASD, SADT. and

similar approaches). and some kind of ER-like data modeling method approach. There are great

differences in their expressive power, and in their user interface designs and capabilities. Many of

the tools have acceptable, or even impressive, user interface architectures, but in general, the

expressive power of the tools is primitive. Few of them can handle more advanced conceptual

modeling concepts such as generalization, constraint definitions and complex objects. More

advanced ('intelligent') verification and validation suppon facilities are normally lacking.

Experience of use of tools in projects of realistic size is still quite limited. Few tools can report

industrial use in LARGE and complex projects. Therefore, neither tool vendors nor tool users are

yet sure what functionality they really should expect from a CASE tool.

Janis A. Bubenko jr 11

3.2 Customizable environments - CASE shells
A customizble environment can be denoted a "CASE-shell" (in analogy with an expert system
shell). A CASE shell includes mechanisms to define a CASE tool for an arbitrary method or chain
of methods. In order to define a method one must define a design object schema (a conceptual
schema of the design objects constituting a particular method, including constraints, derivation
rules, operations & preconditions). In addition one must define a set of interrelat~ and interacting
analysis and development work processes by which a welljormed instance of the design object
schema is gradually developed. Description of the work processes should include guidelines,
rules for checking the consistency, completeness, and quality of the designed objects and their
relationships. Few commercially available CASE shells exist today, To our knowledge only
ECLIPSE by SSL, UK (developed as part of an ALVEY - project), corresponds to our defmition
of a 'shell' (perhaps also Meta Software's Design GADS, but we lack detailed information at the
moment). The CASE-shell area is still mainly a research area. The RAMA TIC research effort by
SISU, reported in [Dahl85] and in [DAISEE'87], aims at a generic, i.e. customizable, graphics
oriented modeling support environment.

3.3 CASE research
A very large number of research efforts currently exist in this area. Most of them are directed
towards improving the "intelligent support" facilities of CASE-tools for particular methods and
approaches by the use of KBS (Knowledge Based Systems) techniques. Typical topics, covered
by this research, are

conceptual specification of methods (e.g. [Reiner84], [Coelh085], [Gustaf86], [Jarke88]).
The aim of these efforts is to arrive at strict specifications of methods (their types of objects
and work procedures), and, in the long run, of the "knowledge" guiding the work according to
a particular method.

support for capturing of requirements, application knowledge, and assistance in building
conceptual specifications. Here we can point to the Knowledge-Based Requirements Assistant
(KBRA) effort [Harris88], the Knowledge-based Specifications Assistant (KBSA) effort
[Johns88], as well as form driven approaches (e.g. [Manni86]), and natural language driven
approaches (e.g. [Kerst86, Cauvet87, Bouze85]).

conceptual schema diagnosis and restructuring (e.g. [Eick84, Eick85, Cauvet87, Wohed87,
Bouze85, Sundin85]. The problems tackled here concern the problem of improving the quality
of a conceptual schema specification.

Janis A. Bubenko jr 12

view integration support (e.g. [Batini86, Johans87]). The problem here is to provide support
for integrating local "user views" - local conceptual specifications or schemata - into a global
specification.

assistance in working with methods which employ hierarchical decomposition of processes
and data flows in business or real-time, embedded systems. Some researchers (e.g. [Pietri87,
Lubars86]) report on prototypes, which can provide support and suggestions to the designer in
decomposing a data flow model. Other, ongoing research tries to develop design metrics to
diagnose and assess designs for quality, "normality" (i.e. to detect whether a design deviates
from what could be considered as "normal"), etc. [Budgen88].

It has been observed in all of the above efforts that "domain knowledge" plays an important role to
be able to perform the tasks sufficiently well. Interesting steps towards incorporating domain
knowledge have been taken, but much remains to be researched.

A large number of efforts in building "environments" can be noted in the programming language
and methodology field. Work here ranges from natural language specification of programs (see for
instance [Balz85]), and transformation of specifications to programs, to 'knowledge-based'
high-level program editors (e.g. the Programmers Apprentice project at MIT [Waters85]). Some of
this work, e.g. the paraphrasing of formal specifications to natural language specifications (for
validity checking), may become highly relevant to the CASE approach as well.

Many research contributions and tools exist to provide support in the logical and physical design
stages of the systems development life-cycle. Brodie [Brodie87] surveys several tools which
provide support for tasks such as transaction analysis, logical/physical database design and code
generation.

4. Choosing a strategy for CASE

4.1 The situation
The situation in the methods development area as well as in the CASE area is clearly turbulent and
unstable. New directions in methods can be envisioned (section 1.2). It is today difficult to say
which direction will dominate, or when we will approach some kind of methodology maturity and
consensus, if ever.

The CASE tool market is exploding in terms of number of tools introduced in the market. Many of
the commercial tools seem to be reasonable products, but still more seem to be "toys", not suited for

Janis A. Bubenko jr 13

use in projects of realistic size and complexity. The growth of the commercial CASE tool market is
estimated at about 50 new tools per year. Practically all of them are geared to a specific
methodology. Nobody knows how many CASE tools are actually in use today in realistic projects.
Probably not too many. The number of research prototypes in the CASE area, being developed at
universities and research centres, is larger than the number commercially available tools, and is
rapidly increasing.

A particular concern is the difference between the "state of the art" methods employed by today's
popular tools and the directions modem software methods research is taking. Will the existing
CASE tool vendors change their methods approach and follow the scientific developments? Or will
they defend their investment and oppose the introduction of new methodologies? If many more
designers start to employ their CASE tools, this will undoubtly further conserve the use of existing
methods.

Every organization experiences problems of various kinds (productivity, performance, quality) with
their information processing system development and operation activities. It is now only natural
these organizations ask the question "can help be obtained from going CASE?", and, having
obtained affirmative answers from CASE vendors, further ask the question "which strategy should
we choose for introducing CASE in our organization ?".

This complex question depends on many situational factors in your organization. In the following
we will examine some possible strategies, and then suggest a number of situational factors which
might be considered in selecting a road of action. Finally we will discuss how these factors may
influence the actual choice of strategy for CASE.

4.2 Strategies
Below we list a number of possible strategies for dealing with the CASE issue today. Clearly,
additional strategies may be formed by selecting a mixture of them.

A Wait and see. Observe others while they make all the initial mistakes.

B Limited experimentation. Acquire one or two CASE-tools which suit your way of
working and which are reasonably compatible with your methodology. Allocate a reasonable
budget, sufficient time, and competent people to experiment, and to learn more about the
CASE area. Make a serious effort to apply the tools to a set of small, but real, projects.

C Go for a method specific CASE tool. Make a serious assessment of a number of

Janis A. Bubenko jr 14

commercial CASE tools by performing well designed and well planned experiments on
small, but "tough" cases. Allocate sufficient resources and competent people to these
experiments. If the experiments turn out successful, acquire the tool you think is best for you
and then make a seroius commitment to introduce it in your organization. Otherwise, if
the experiments do not turn out successful, you will have learned a lot and you will be able to
make better decisions for the future.

D Build your own CASE tool. Make an assessment of existing CASE shells and shell
vendors. Acquire a CASE shell and develop your own CASE tool geared to your own
methodology. Before doing this learn as much as possible about the more powerful, existing
method specific tools, related to your methodology.

E Order your own CASE tool. Let a shell vendor, using a CASE shell, tailor a CASE tool
for your methodology.

F Integrate several tools. Try to integrate several CASE tools by making them, if possible,
cooperate. For instance, there may be a tool good at conceptual data modeling, and another
one good at logical data base design, assuming as input a conceptual data model.

G Experiment with research prototypes. Establish cooperation and a joint project with a
research organization specializing in CASE and work together with it in experimenting with
new methods and tool prototypes.

4.3 Situational factors
In this discussion we will assume a medium size "typical" user organization with its own
professional staff for developing and maintaining its computer applications. We, thus, exclude
consultants, data processing service centers and similar organizations as their relationship to CASE
can vary greatly.

Characteristics of your infonnation system development organization

One important factor is your organizations policy and attitude concerning professional
development of its staff. Another one is the degree of realism in its expectations concerning
CASE. The following questions are examples one might ask in order to try to determine your
organization's professional maturity with respect to entering the CASE area.

Is the attitude of your organization's management in favour of making a serious commitment

Janis A. Bubenko jr 15

in a CASE experiment without expecting "magic" and immediate results?

Do you have staff with a good professional and theoretical competence in methods or do you
have the potential, knowledge and environment to acquire and train such staff?

Do you give your staff regular further, advanced training in computer science, methods, and
in CASE related topics? Do you encourage your staff to read international, professional
periodicals on these topics? (check how many of the references given in this report are
familiar to your professionals).

Do you have a 'central', competent method development and advisory group with sufficient
authority and resources?

Characteristics of your method environment and policy

Another factor is the methodological maturity of your organization, i.e. whether you make a serious
effort to work according to good 'engineering principles' and standards. Affirmative answers to,
for instance, the following questions, might indicate a good methodological maturity.

Do you have your own strictly defined and actively used (manual) system development
method that covers substantial parts (stages) of the systems life cycle?

Do you enforce the use one particular methodology and documentation standards, or is it
permitted, within your organization, to work with (possibly fragments of) a multitude of
methods?

Do you strictly enforce project planning, control, cost & performance measurement, and
quality assurance procedures in your information system projects?

Are you actively working to extend your knowledge and your methodology to cover
additional sectors/problems of the information systems development area (such as for
instance information administration, database administration, security management, systems
maintenance, etc)?

Vendor and/or consultant profiles
An important set of factors in selecting a strategy for CASE is obviously the expected relationship
between your organization and the CASE vendor, or vendor representative. Consider, therefore, the
following.

Janis A. Bubenko jr 16

Availability of and access to CASE vendors/representatives
Methodological competence of vendors or vendor representatives
Vendor potential and plans for future development of tools and methods
Relationship of your methodology, if any, to the methods offered by tool vendor

4.4 Discussion and recommendations.
We start this discussion with a few dont's. We will then examine the various strategies above and,
in particular, comment on the choice between buying a method specific tool and developing your
own tool using a CASE shell.

• Do not select strategy A "Wait and see". You will then probably be out of competition and
out of qualified staff by 1995.

• Do not believe a CASE tool can compensate the lack of skills and inferior method knowledge
of your staff.

• Do not believe that the tools we see today will last - a few of them will be greatly changed
and improved and therefore survive. The rest will disappear.

• Do not develop your methodology first and then look around for CASE tools to fit your
method. Such tools do not exist. Stop developing "new" methods without considering
existing, method specific tools or considering the capabilities of existing CASE shells.

Strategy B, "Limited experimentation", seems to be the minimum strategy one can choose
today. You may choose some of the less expensive (and less comprehensive) tools and experiment
with selected method-stages of the systems life cycle. This, of course, requires the support of your
management and allocation of sufficient skilled staff, time and resources. If you do not have
qualified staff available, you have to consider further training of current staff or recruiting of new
staff with the required background. As this is a limited commitment, vendor access and support
should not be of utmost importance.

Strategy C is "Going for a method specific CASE tool". As this implies a considerable
commitment in terms of people, methods, and ways of working, you should have a good
methodological maturity and the full backing of your management. Most likely, you must be
prepared to switch to another method, or at least considerably change your current way of working.
You must be prepared to allocate skilled people to the project and give them the authority and
resources needed to enforce the new methods and the new, probably more disciplined, way of
working. This strategy requires good access to tool vendors or their representatives. It also requires
that the vendors/representatives have the potential to make a serious commitment to your project and
serve you with qualified advisors and tutors regarding the use of the method as well as regarding

•

Janis A. Buhenko jr

the use of the tool.

17

Building your own CASE tool, i.e. strategy D, is not recommended if your organization does
not satisfy the preconditions for this undertaking. The same conditions concerning management
support and backing as for strategy C hold. In addition there is the absolute need for a strict and
comprehensive methodology, a very qualified methods-staff, and a highly experienced and skilled
software staff for "programming" the CASE shell according to yoUrmethodology.

Strategy E, "Order your own CASE tool", is similar to strategy D, except that you order a
qualified vendor or consultant to "taylor" a CASE tool to fit your own methodology. The
requirements for management support, resources, and commitment are the same as for D, but in this
case you do not need your own software builders to the same extent as for strategy D. On the other
hand, the requirement for having highly skilled methods people is just as important. The
requirement for a strict methodology is, of course, mandatory. On the other hand, you should no~
be surprised when working with building a CASE tool for your methodology, the methodology will
most likely, more or less, change during the tool building process. The reason for this is that CASE
tool building requires the method's constructs to he strictly and formally defined. This implies that
during the process of building a tool you will perform a very thorough examination of your
method's existing concepts and principles. This examination more often than not leads to changes,
improvements, and extensions of various kinds. The same phenomenon, of course, also holds for
strategy D.

Integrating several tools (strategy F) may turn out to be a good strategy to follow if you have
tools available on the market some of which satisfy your requirements for method support in
different stages of the systems development life cycle. This strategy puts very strong requirements
on the qualifications of your methods staff as well as on your software people. Research activities
in this area are ongoing. However, so far no practical applications of this strategy are, as far as the
author knows, reported.

Experiment with research prototypes (0) can be seen as a complementary activity to some of
the strategies above. This strategy should be of particular interest to the "more open" strategies D
and E, where you are building your own method environment. By studying - and copying - ideas
and principles from the research prototypes you may gradually extend and improve your methods as
well as your tools. An example of this might be the extension of your tools by incorporating in them
"intelligent support" - a theme favoured by many research efforts (see section 3.3).

In conclusion we will examine some general pros and cons of acquiring method specific CASE
tools vs using CASE shells to build tools for your own methodology. In a way this gives additional

Janis A. Bubenko jr 18

comments on the problem of selecting a B or C strategy vs selecting a D or E strategy. Basically the
problem is analogous to developing your own pay-roll system or buying a standard pay-roll
package. Below we will suggest some advantages of selecting a method specific CASE tool, and
building your own tool using a CASE shell, respectively. The disadvantages of one approach are.
often the inverses of the advantages of the other.

Method specific CASE tools, assuming you do have your own methodology which IS

different from the one offered by the tool, should offer the following advantages.

+ Shorter lead time. You can install the tool almost immediately and start preparing
yourselves to use it and to learn its methodology. Building your own tool will require,
depending on its complexity, a lead time of at least 6 months. However, you must also
consider the time required to introduce a new method of working in your organization. This
may take several months too.

+ Robustness and performance. It is probable that a vendor product designed for
competition with similar products on the market is well-egineered with respect to robustness
and performance. It is also probably more "bug-free" than the tool you build yourselves.

+ Vendor support. For marketing reasons a vendor CASE tool must have an adequate
organization for providing support to its users in terms of maintenance, new releases,
training material, etc. If you develop your own tool, a similar support organization must exist
or be established.

Building your own tool using a CASE shell, assuming you have your own methodology,
may have the following advantages.

+ Acceptance. It is probably more easy to get at tool accepted by your system design staff, if
it suppons a methodology established in your organization. Less time and resources for
re-training of your staff, for development of new working directives, manuals, handbooks,
etc., are required.

+ Changeability and extensibility. Probably few method specific tools are
comprehensive enough to cover other tasks than those typically included in a software
life-cycle model. Tasks like information strategy planning, information resource
management, data and database administration, quality assurance, security management, and
that like, are becoming important activities in organizations, concerned not only of
developing specific systems, but also in planning for an integrated and rational use of

Janis A. Bubenko jr 19

information technology in a total, organizational perspective. This will require CASE tools to
be integrated with, or extended to, tools to support the above activities. Building your own
CASE environment offers probably better possibilities to design and implement these
extensions according to the need of your organization.

+ Vendor method independence. Perhaps the most important factor in choosing between
these alternatives is your judgement concerning the importance of being independent of
future developments, or the possible lack of developments, of your "method vendor". We
all know of the advantages and disadvantages of being dependent on the hardware and basic
software of a selected computer vendor. Buying a vendors method specific CASE tool
implies committing yourself to his plans for future method development, if any, and will
create extremely strong ties between your organization and the vendor. You have to consider
what actions you will take if the vendor switches to a new methodology, and stops further
improving the tool you bought, or if the vendor gets out of business.

5. Concluding remarks

Even though many of the available CASE tools of today are "toys", entering the CASE area should
be taken seriously. In this article we have tried to illuminate the state of the art of methods as well as
of method support tools. We have also briefly surveyed research directions concerning methods as
well as concerning tools. Even if we are only at the beginning of the CASE era, knowing little of
what requirements to state for good and effective CASE work environments, it is necessary to start
learning more about them in order to become qualified "consumers" of the future. We have listed
and discussed some possible strategies for dealing with the CASE issue.

Clearly, there are more variants of them, and - clearly - there are more situational factors to
consider. However, one of the main messages of this report is that CASE technology will not solve
your method and system development problems unless you are prepared to seriously consider the
need for further professional development of your staff. According to a survey made by SEI,
Pittsburgh [Hump88], the capabilities and the "software process maturity" of the majority of
organizations surveyed, are surprisingly low. Organizations must improve their "excellence" in the
fundamentals of information and software engineering before making a heavy investment in CASE.

ACKNOWLEDGEMENT
Valuable comments an suggestions to a draft of this report have been given by Alfs Berztiss,
Pittsburgh, and Stig Johansson, VOLVO CAR, Goteborg.

Janis A. Bubenko jr 20

REFERENCES
Abbod87 T. Abbod, K. Brown, H. Noble: Providing Time-Related Constraints for

Conventional Database Systems, in [VLDB87].
BaIz85 R. Balzer: A 15 Year Perspective on Automatic Programming, IEEE Trans. on SE,

Vol.ll, Nov.,1985.
Batini86 C. Batini, M. Lenzerini, S. B. Navathe: A Comparative Analysis of Methodologies

for Database Schema Integration, ACM Computing Surveys, Vol. 18, No.4, Dec.
1986.

Bjorn88 A.Bjornerstedt, S. Britts: AVANCE: An Object Management System, SYSLAB
Working Paper Nr 124, Univ. of Stockholm, 1988.

Borgida87 A. Borgida, M. larke, J. Mylopoulos, l.W. Schmidt, Y. Vassiliou: The Software
Development Environment as a Knowledge Base Management System, MIP-871O,
Fakultat fur Mathematik und Informatik Universitat Passau, 1987.

Bouze85 M. Bouzeghoub, G. Gardarin, E. Metais: Database Design Tools - an Expert System
Approach, Proceedings of VLDB-85, Stockholm, 1985, Morgan Kaufmann Publ.
Co.

Brodie84 M.L.Brodie, J. Mylopoulos, lW. Scmidt (editors): On Conceptual Modeling -
Perspectives from Artificial Intelligence, Databases, and Programming Languages,
Springer, 1984.

Brodie86 M.L. Brodie, J. Mylopoulos (editors): On Knowledge Base Management Systems -
Integrating Artificial Intelligence and Database Technologies, Springer, 1986.

Brodie87 M. L. Brodie: Automating Database Design and Development, Tutorial, Nov. 1987,
Authors address: GTE Laboratories Inc., 40 Sylvan Road, Waltham, MA, 02254,
USA.

Budgen88 D. Budgen, M. Marashi: KBS Techniques Applied to the Assistant of Software
Design - The MDSE Advisor, Univ. of Sterling, UK, 1988. Also in Proceedings of
the International Workshop on KBS in Software Engineering, University of
Manchester Institute of Science and Technology (UMIST), March 7-9, 1988.

Cauvet87 C. Cauvet, C. Proix, C. Rolland: A Knowledge Based Information Systems Design
Tool, Univ. of Paris 1 and 6, France (to appear in Proceedings IFIP TC2ffC8
Working Conference on "The Role of AI in Databases and Information Systems",
Canton, China, July, 1988, North Holland).

Chik088 E. J. Chikofskij: Software Technology People Can Really Use, IEEE Software,
March, 1988.

CRIS-taskgr The CRIS task group (part of the IFIP WG8.1, led by T.W OUe) is about to publish a
report, presenting a Reference Framework for Information Systems Methodologies
(1988)

Janis A. Bubenko jr 21

Coelh085

Dahl85

DAISEE87

Dubois86a

Eick84

Eick85

Floyd86
FRISC087

Gustaf86

Gustaf82

Harris88

Hump88

Jarke88

Johans87

Johns88

Kerst86

H. Coelho, A. Rodrigues, A. Sernadas: Towards Knowledge Based Infolog
Specifications - A Case Study of Information Engineering, Decision Support Systems
1, 1985, pp. 143 - 166.
R. Dahl, D. Eriksson, L-A Johansson, U. Sundin, H. Torbjar: RAMATIC -
Modeling Support System, SYSLAB Univ. of Stockholm, SYSLAB Report Nr. 34,
1985.
Data-Stottet Systemutvikling - DAISEE'87 (Computer-Aided Systems Development),
Proceedings from a Workshop arranged by the Department of Computer Science,
NTH, Trondheim, 12-13 Nov., Oslo, 1987.
E. Dubois, J. Hagelstein, E. Lahou, F. Ponsaret, A. Rifaut, F. Williams: The ERAE
Model: a Case Study, in [Olle86].
Ch. F. Eick, Methoden und rechnergestiitzte Werkzeuge fUr den logischen
Datenbankenentwurf, PhD Thesis, Univ. of Karlsruhe, FakuWit fUr Informatik,
Karlsruhe, FRG, July, 1984.
Ch. F. Eick, P.e. Lockemann, Acquisition of Terminological Knowledge Using
Database Design Techniques, Proc. ACM SIGMOD 1985, pp. 84-94, 1985.
e. Floyd: A Comparative Evaluation of System Development Methods, in [01le86].
IFIP WG 8.1 has in the fall of 1987 initiated a task group FRISCO (FRamework of
Information System COncepts) with the objective to improve the conceptual
foundations of information systems.
M.R. Gustafsson, B. Wangler: A Conceptual Model for Computer Supported
Information Systems Development, SYSLAB Workning Paper 113, 1986.
M. R. Gustafsson, T. Karlsson, J. A. Bubenko Jr: A Declarative Approach to
Conceptual Information Modeling, in [Olle82].
D. R. Harris: An Overview of the Knowledge-Based Requirements Assistant, in
[RADC88].
W. S. Humphrey: Characterizing the Software Process: A Maturity Framework, IEEE
Software, March, 1988.
M. Jarke, M. Jeusfeld, T. Rose: Modelling Software Processes in a Knowledge Base:
the CASE of informations Systems, Report, Univ. of Pass au, P.O.Box 2540,
D-8390 Passau, F.R. Germany, 1988. Also in Proceedings of the International
Workshop on KBS in Software Engineering, University of Manchester Institute of
Science and Technology (UMISn, March 7-9, 1988.
B-M Johansson, C. Sundblad: View Integration - a Knowledge Problem, SYSLAB
Working Paper 115, 1987.

W. L. Johnson: Overview of the Knowledge-Based Specification Assistant, in
[RADC88].
M.L. Kersten, H. Weigand, F. Dignum, J. Bloom: A Conceptual Modelling Expert

Janis A. Bubenko jr 22

System, 5th Internal. Conf. on the ER-approach (ed. S. Spaccapietra), pp. 275-288,
Dijon, France, 1986.

Kung83 C. R Kung: An Analysis of three Conceptual Models with Time Perspective: in T.
W. Olle et al (editors): Information Systems Design Methodologies - a Feature
Analysis, North Holland, 1983.

Loucop87 P. Loucopoulos, W. J. Black, A.G. Sutcliffe, PJ. Layzell: A Unified View of Model
Representations in System Development Methods, Department of Computation,
UMIST, P.O. Box 88, Manchester M601QD, U.K.

Lubars86 M. D. Lubars, M.T. Harandi: Intelligent Support for Software Specification and
Design, IEEE Expert, Winter, 1986

Manni86 M.V. Mannino, 1. Choobineh, J.J. Hwang: Acquisition and Use of Contextual
Knowledge in a Form-Driven Database Design Methodology, 5th Internal. Conf. on
the ER-approach (ed. S. Spaccapietra), pp. 141-157, Dijon, France, 1986.

Martin87 N. Martin, S. Navathe, R. Ahmed: Dealing with Temporal Schema Anomalies in
History Databases, in [VLDB87].

Martin88 C. F. Martin: Second Generation CASE Tools: a Challenge to Vendors, IEEE
Software, March, 1988.

Olive86 Antoni Olive: A Comparison of the Operational and Deductive Approaches to
Information Systems Modeling, IFIP Congress 1986, North Holland, 1986.

Olle82 T.W. Olle, RG. Sol, A.A Verrijn-Stuart (Editors): Information System Design
Methodologies: a Comparative Review, North Holland, Amsterdam, 1982.

Oile83 T.W. Olle, H.G. Sol, C.J. Tully (Editors): Information System Design
Methodologies: a Feature Analysis, North Holland, Amsterdam, 1983.

Olle86 T. W. OIle, R G. Sol, AA Verrijn-Stuart (Editors): Information System Design
Methodologies: Improving The Practice, Elsevier Science Publishers B.V. (North
Holland), Amsterdam, 1986.

Pietri87 F. Pietri, P.P. Puncello, P. Torrigiani, G. Casale, M. Degli Innocenti, G. Ferrari, G.
Pacini, F. Turini: ASPIS: A Knowledge-Based Environment for Software
Development, ESPRIT Project 401, Proceedings ESPRIT Technical Week, 1987 (see
also an article about ASPIS in IEEE Software, March, 1988).

Raupp84 T. Raupp: QualiUitsverbessernde Transformationen Konceptueller Schemata, Diploma
Thesis, Univ of Karlsruhe, FakultiH fUr Informatik, FRG, 1984.

Reiner84 D. Reiner, M. Brodie, G. Brown, M. Friedell, D. Kramlich, J. Lehman, A.
Rosentahl: The Database Design and Evaluation Workbench (DDEW), IEEE Database
Engineering, Vol. 7, No.4, Dec. 1984.

Rubric87 ESPRIT project 928: RUBRIC - A Rule Based Representation of Information
Systems Constructs.

Sundin85 U. Sundin: A Plan Generating System For Conceptual Schema Restructuring:

Janis A. Bubenko jr 23

SYSLAB Report Nr 33, Chalmers Univ. of Technology, Goteborg, Sweden, 1985
(to appear in H. Kangassalo (Ed) "Information Modelling and Database
Management", Springer-Verlag)

RADC88 Rome Air Development Center: Second Annual Knowledge-Based Software Assistant
Conference, Proceedings, Rome Air Development Center, Air Force Systems
Command, Griffiss Air Force Base, NY 14331-5700.

Ryan86 K. Ryan (Editor): An Experimental Basis for TooIUse, Technical Report CSC-86-3,
Dept. of Computer Science, Trinity College, Dublin 2, Ireland, 1986.

Waters85 R.C. Waters: The Programmers Apprentice: a Session with KBEmacs, IEEE Trans.
on SE, Vol. 11, Nov., 1985

VLDB87 P. M. Stocker, W. Kent (editors): Proceedings of the Thirteenth International
Conference on Very Large Data Bases, Brighton, UK, Morgan Kaufmann Publ. Inc.
1987.

WohOO87 Rolf WohOO: Diagnosis of Conceptual Schemas, SYSLAB, Univ. of Stockholm,
SYSLAB Report Nr. 56, 1987, (also to apperar in Proceedings IFIP TC2{TC8
Working Conference on "The Role of AI in Databases and Information Systems",
Canton, China, July, 1988, North Holland).

THE SYSTEMS DEVELOPMENT AND ARTIFICIAL
INTELLIGENCE LABORATORY

The Systems Development and Artificial Intelligence Laboratory
(SYSLAB) is a joint venture between the Department of Computer
Sciences at the Chalmers University of Technology and the Uni-
versity of Goteborg (SYSLAB-G), and the Department of Informa-
tion Processing and Computer Science, at the Royal Institute
of Technology, Stockholm and the University of Stockholm
(SYSLAB-S). The laboratory is chiefly sponsored by STU (The
National Swedish Board for Technical Development) .

SYSLAB research covers the following research areas.

1. Conceptual modeling of applications including modeling
languages, knowledge representation, modeling environment
and database design.

2. Artificial intelligence and its application to development
and use of information systems.

3. Interactive and distributed systems including office infor-
mation systems and distributed databases.

4. Graphics based environments for general model management
and design.

For further information:

SYSLAB-S
Dept. of Information Processing & Computer Science
University of Stockholm
S-106 91 STOCKHOLM, Sweden
phone: 46-8-162000

ISSN 0281-6164

	page1
	titles
	The Systems Development
	Artificial Intelligence Laboratory
	SELECTING A STRATEGY FOR
	Janis A. Bubenko Jr
	SYSLAB
	SYSLAB Report No 59
	June 1988
)

	images
	image1
	image2
	image3

	page2
	titles
	1
	SELECTING A STRATEGY FOR
	ABSTRACT

	page3
	titles
	Introduction
	1. Methods - state of the art and trends

	page4
	page5
	titles
	2. General functional features of CASE-tools

	page6
	page7
	page8
	page9
	titles
	Designers
	Other CASE tools
	•...
	I/O and presentation subsystem
	,r :
	Design-DB interface

	images
	image1

	tables
	table1

	page10
	titles
	9
	3. CASE - state of the art and trends

	page11
	page12
	titles
	11

	page13
	titles
	4. Choosing a strategy for CASE

	page14
	page15
	page16
	page17
	titles
	•

	page18
	page19
	page20
	page21
	titles
	REFERENCES

	page22
	page23
	page24
	page25

